

COTE D'IVOIRE

Union - Discipline - Travail

MINISTÈRE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

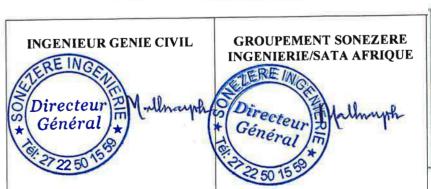
Institut National Polytechnique Félix HOUPHOUET-BOIGNY (INP-HB)

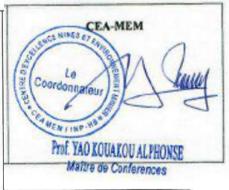
ETUDES ARCHITECTURALES ET TECHNIQUES POUR LA CONSTRUCTION D'UN LABORATOIRE MINES ET ENVIRONNEMENT MINIER A L'INP-HB DE YAMOUSSOKRO

ETUDES D'AVANT-PROJET DETAILLÉE (APD)

NOTE DE CALCUL ET CARNET DE FERRAILLAGE

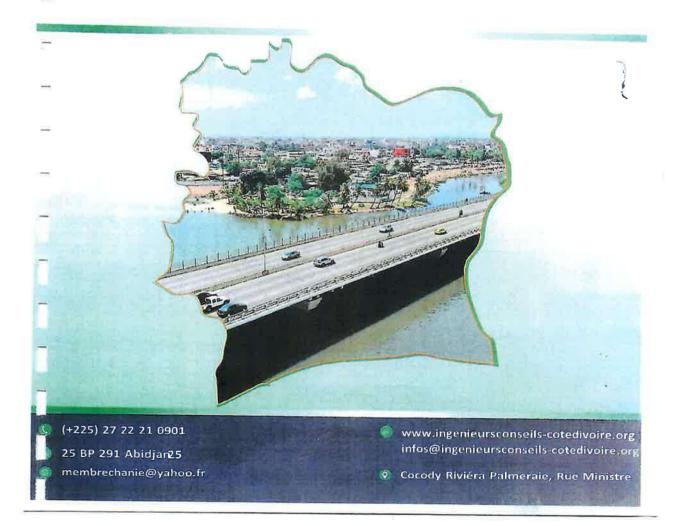
MAITRE D'OUVRAGE: MESRSCI
Financement Agence Française de Développement (AFD)/Crédit AFD N°CCI 16790 I T


<u>MAITRE D'ŒUVRE</u> (MOE) GROUPEMENT SATA AFRIQUE & SONEZERE INGENIERIE



Etudes techniques
Maîtrise d'œuvres
Formation - Gestion de projets

01 B.P. 3610 Ouagadougou 01 / Tél : (226) 25 30 27 11 / Fax : 25 30 27 12 infos@satafrique.com / www.satafrique.com



République de Core d'Ivoire Union-Cracipina-Travail

CHAMBRE NATIONALE DES INGENIEURS-CONSEILS ET EXPERTS DE GENIE CIVIL DE CÔTE D'IVOIRE

Regua oghas

Janvier 2025

MOT DU PRESIDENT

Mesdames et messieurs.

Je suis heureux de vous présenter, dans les pages qui suivent, la Chambre Nationale des Ingénieurs-Conseils et Experts de génie civil de Côte d'Ivoire (CHANIE).

La CHANIE regroupe les bureaux d'études du génie civil et des domaines connexes ayant une expérience avérée dans les études techniques, économiques, sociales et environnementales. Avant tout agrément, nous nous

assurons que les expériences des bureaux d'études, futurs membres de la CHANIE, leur permettent de répondre aux exigences de qualité globale et durable, de sécurité et d'optimisation des investissements des ouvrages à réaliser ainsi que le bon suivi et le contrôle des travaux de construction et d'aménagement.

Les Ingénieurs-Conseils de la CHANIE offrent des services d'ingénierie professionnels à des clients des secteurs public et privé. Ils agissent aussi comme représentants indépendants de leurs clients et il leur revient de trouver des solutions adaptées à des problèmes techniques dans la conduite des projets. Ils offrent aussi des conseils stratégiques en matière d'affaires et de gestion. De ce fait, ils restent des partenaires incontournables et fiables des maîtres d'ouvrages de tout projet de bâtiment, des travaux publics et des autres secteurs de la construction.

La CHANIE est membre de la FIDIC, la Fédération Internationale des Ingénieurs-Conseils, qui est l'organisme représentatif mondial des associations nationales d'Ingénieurs-Conseils regroupant plus d'un million de professionnels de l'ingénierie et de 40 000 entreprises dans environ 100 pays à travers le monde.

Confier la gestion d'un projet de construction et d'aménagement à un Ingénieur-Conseil de la CHANIE est gage de réussite selon les normes et les règles de l'art, ainsi que dans le respect des délais et des coûts. La CHANIE se félicite de la confiance placée en ses membres par les pouvoirs publics et les principaux porteurs de projets du secteur du BTP et des secteurs connexes.

Au nom de tous les Ingénieurs-Conseils de la CHANIE, je remercie tous nos partenaires.

DOMAINES D'INTERVENTION DE L'INGENIEUR-CONSEIL (NON LIMITATIF)

- Assainissement.
- Bâtiments.
- · Electricité.
- · Energie,
- Environnement.
- · Hydraulique,
- · Ingénierie industrielle,
- · Mines et géologie,
- Ouvrages d'art,
- · Routes et VRD.
- · Sciences géographiques,
- Travaux maritimes et fluviaux.
- · Etc.

LES ACTIVITÉS DE L'INGENIEUR-CONSEIL (NON LIMITATIF)

- Appui à la passation de marchés,
- Assistance à maitrise d'ouvrage (AMO),
- Assistance et conseils techniques,
- · Dimensionnement des ouvrages du génie civil,
- Etude d'ouvrages hydrauliques,
- Etude des prix,
- Etudes d'impact environnementale et social.
- Etudes de réseaux d'assainissement,
- Etudes routières, de voiries et réseaux divers (VRD),
- Expertise et audit technique des d'ouvrages,
- · Maitrise d'œuvre (MOE).
- Maitrise d'ouvrage délégué (MOD),
- · Ordonnancement, pilotage, et coordination (OPC),
- Pilotage, suivi et contrôle des travaux,
- · Etc.

Depuis le 15 septembre 2015, à Dubaï, la CHANIE est membre de la Fédération Internationale des Ingénieurs-Conseils (FIDIC)

1 – AU TITRE DES BUREAUX D'INGENIERIE CHANIE

NUMERO D'ORDRE	NUMERO CHANIE	REPRESENTANT	DOMAINES	ADRESSES POSTAL
PORDRE	RAISON SOCIALE	KEFKESENTANT	DE SPECIALITE	TELEPHONIQUE ELECTRONIQUE
1	BET-01/1987	BACHETTA Eric	 Bâtiments courants et IGH, Etablissements industriels, Ouvrage d'art, Routes, hydraulique, assainissement, 	01 BP 1687 Abidjan 01 Tél: 27 21 26 08 36 27 21 26 08 38 Cél: 01 41 78 70 92 / 07 07 93 16 03
			 Travaux maritimes et Fluviaux, VRD. 	Fax : 27 21 26 08 58 Emali : eteco daviso.ci
2	BET-02/1987	MAKI Amed	 Assistance à la maîtrise d'ouvrage (AMO), Etudes techniques, 	18 BP 2708 Abidjan 18 Tél : 27 21 24 46 88/ 27 21 24 46 Fox : 27 21 24 46 43
	CICOP-CI		Direction et contrôle des travaux (MOEX), Projets clé en main (EPC+F).	E-mall : sales a clcapci.com Site web : www.clcopci.com
	BET-03/1987	OLLO Akou	- Bôtiment, - Electrification,	01 BP 8466 Abidjan 01
3	ICI-CI SA	Jean-Léon	 Etudes d'impact environnemental, Expertise immobilière, Infrastructures, 	Tél: 27 20 22 96 02/ 27 20 30 01 5 Fax: 27 20 21 86 15 Email: Iclai Baylso.ci Sile Web: www.lcl.ci
			- Ouvrages d'art.	AND THOSE WASARIETO
4	BET-04/2004	YATE Tobo	 Etudes et expertise de bâtiments, Expertise immobilière. 	01 BP 11796 Abidjan 01 Tél : 27 20 33 22 68 Cél : 05 05 02 28 56
	BETSALEEL	Marc	- expense immobiliere.	Fax : 27 20 33 21 78 Email : betsa « aviso.cl
	BET-05/2004	11.00	- Båtiments,	25 Bolle Postale 1538 Abidjan 25
5	BETICI SN	TRAORE Mamadou	 Ouvrages d'art, Routes et VRD, Adduction d'eau, assainissement, Expertise, consell, formation. 	Abidian-Cocody Riviera Palmoraia, 22 Angles rue: H19-H22
6	International d'Ingénierie-Cl 21-Cl SA	COULIBALY Souleymane	Bâtiments courants, IGH et bâtiments à structures complexes, Ouvrages d'art, Aérodromes et voies ferrées, Assainissement, VRD, routes.	8P 111 Cedex Abidjan 0? Tél: 21 21 80 15 25 Cél: 05 05 05 73 54 Email: coulsauld-gmall.com Info2lci «2ici-sa.com Sile web: www.2ici-sa.com
	DET 07/0000	TOURE	 Infrastructures de transport (routes, VRD, ouvrages d'art), 	06 BP 1105 Abidjan 06
7	BET-07/2008	Moustapha	- Bâtiment et urbanisme,	Tél: 27 22 47 44 87 Fox: 27 22 47 44 87 Cél: 05 05 85 29 38
	ARC INGENIERIE	Almami	 Eau et assainissement, Energie, Environnement et société. 	Emall: al à arc-ingenierle.com / arcing a aviso.cl / tam arc- ingenierle.com
8	BET-08/2008	N'DRI Yao	 AssainIssement, Bâtiment, Energle, environnement, 	08 BP 1470 Abidjan 08 Tél: 27 22 23 16 83 Céi: 07 07 83 85 44/07 07 09 95 34
	CEFACL	Théodore	 Hydraulique, Infrastructures de transport, VRD. Bâtiments et ouvrages d'art, 	Emall : Intos a cefact.com theondry a yahoo.tr Site Web : www.cefact.com
9	BET-09/2008	BOUZID Khalli	- Electrification, - Environmement,	08 BP 651 Abidjan 08 Tét: 27 22 41 14 52
	ERGEC	Fouad	 Génle clvil, Hydraulique et assainissement, VRD. 	Cél: 05 05 79 98 10 Email: orgec «aviso.cl Email: khbouzid «yahoo.fr
10	BET-10/2008	KOUAME	Bâtiments, Installations industrielles,	06 BP 6219 Abidjan 06 Tél : 27 22 52 24 20
10	ETEIFA EXPERTISES	Konan Claude	Energie,Climatisation, froid,Formation et Expertise.	Cél: 07 08 03 61 94 17 E.mail: info@etelfa.com Site web: www.etelfa.com

NUMERO CHANIE		NAME OF TAXABLE PARTY.		
D'ORDR	RAISON SOCIALE	REPRESENTANT	DE SPECIALITE	ADRESSES POSTALE, TELEPHONIQUE ELECTRONIQUE
_ 11 _	BET-11/2008 HYDRO-CO	KOUACOU Kouadio	 Bâtiment et urbanisme, énergie, électricité Environnement, assalnissement, drainage, Routes, ouvrages d'art, ouvrages maritimes et portuaires, Aménagements hydro-agro-pastoraux. 	22 BP 1614 22 Abldjan 22 Tel: 27 22 52 65 54 Cél: 07 07 07 77 81 Email: info «hydro-co.com Sile Web: www.hydro-co.com
_ 12	MENSO SARL	MENIN Messou	 Routes et voiries, Travaux Maritimes et fluvlaux, Bâtiment, Environnement. 	08 BP 3/6 Abidjan 08 Tél: 27 22 41 71 38 Cél: 01 02 50 24 89 Fax: 27 22 41 47 83 Email: Info amonsosarl.com
- 13 -	TERRABO Ingénieur Conseil	KOUAME Konan Séraphin	 Transport (routes, ouvrages d'art, ouvrages maritimes et portuaires, infrastructures aéroportuaires, etc.), Eau potable, assainissement, arainage, Aménagements hydro-agro-pastoraux, 	06 BP 791 - Abidjan 06? Tél: 27 22 42 40 40, Cél: 07 47 27 57 88, Fax: 27 22 42 05 89, Emall: terrabo «aviso,ci, terrabo «terrabo.con),
- 14 -	BET-14/2008 BERGEC	KOFFI Eugène	 Energie, environnement. Infrastructures routières, VRD, hydraulique/hydrologie, Aménagements hydro agricoles, Aménagements urbains, Bâtiments et construction, Environnement, énergie. 	Sile Web: www.terrabo.com. 20 BP 1169 Abidjan: 20 Tel: 27 22 44 74 15 Cel: 07 07 82 70 54 Fax: 27 22 44 10 92 kofeug/5 a gmall.com bergec a aviso.cl/ info a bergec.cl
15	PHOENIX CONSULTANTS	GBEULY Jonas	 Bátiments, Routes, VRD, Transports, Décentralisation et développement local, Environnement, énergie, hydraulique. 	25 BP 362 ABIDJAN 25 Tél : 27 20 27 14 70 Cél: 07 07 89 34 59 phoenixconsultants24 eyahoo.co m jonasgbeuly «yahoo.fr
16	BET-16/2009 CECOTID	ETTY Ekolan Alain	 Marchés publics, Partenariat Public-Privé. Réseaux électriques, Energie, eau, Assalnissement, Infrastructures routlères, Aéroportuaires et maritimes, Environnement. 	01 BP 13428 ABIDJAN 01 Tdi : 27 22 52 26 75 Cdi : 07 07 01 93 93 Fax : 27 22 52 26 71 E-mail: ekolanally aychoo.fr
- 17	BET-17/2009	KOUADIO N'zi	 Bâtiment, Infrastructures, Adduction d'eau potable, VRD, Routes, 	27 8P 327 ABIDJAN 27 Tèl : 27 22 44 21 75 Cél : 07 07 41 66 35 E-mail : latting Leyohao,fr
18	BET-18/2009 ECGTX	AEVOUELIE Kouassi Yao Guillaume	 Contrôle des travaux, Expertises diverses, audit, formation, Bâtiment industriel, opération immobilière, Infrastructures routières, ouvrages d'art, Aménagements urbains 	06 B.P 2137 ABIDJAN 06 161: 27 22 47 55 69 Fax: 27 22 47 55 68 CGI: 01 03 25 71 90/01 02 74 00 84 07 57 30 37 74 / 01 01 00 17 76 E-mail: eegtk.ned
19	BET-19/2010 FIRST		l'installation des équipements, Gestion en production d'unités de	18 B.P 1251 ABIDJAN 18 Tél : 27 21 25 26 06 Fox : 27 21 25 26 76 Cél : 07 09 75 42 47 F-mall : firstabjøyahno,fr
20	S.2I.C	ASSOUMOU	- Infrastructures des transports, - Bâtlments, - Américaements urbains et ruraux.	09 BP 2220 Ablajan 09 fel : 27 33 76 6 89 fel : 07 07 72 70 91 ëmail : assaumountal «yahoo.fr \$2ic2002info «yahoo.fr
21	BET-21/2011 OPP-AFRIQUE	YOKOYO	- Etudes techniques des bâtiments, - Etudes techniques de tracé routier, des	27 BP 114 ABIDJAN 27 C61: 01 01 50 26 55/07 07 66 01 68 :61: 27 20 33 14 93 :mail: oppafitque «aviso.ci :mail: yokoyoj «yahoo.fr

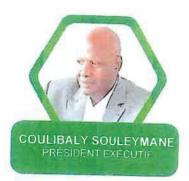
I	NUMERO D'ORDRE	NUMERO CHANIE	REPRESENTANT	DOMAINES DE SPECIALITE	ADRESSES POSTALE TELEPHONIQUE
	22	BET-22/2014 BANI	KOUAKOU Jean Jacques Dewellet	- Etudes, suivi et contrôle des travaux en génie rural et génie civil, - Hydraulique (urbaine et villageoise) - Assainissements - Ouvrages d'arts - Bâtiments.	04 BP 1651 Abidjan 04 E-mail: Into sbani-cl.net 161: 27 23 48 32 01 Cél: 01 03 43 20 54 / 07 07 86 41 60
and a	23	BET-23/2015 CIRMA	KONE Bakary	- Maîtrise d'œuvre, - Expertise, conseils, formations, - Bâtiment, - Génie civii, - Transport, - Environnement.	28 BP 981 Abidjan 28 Tél : 27 22 50 45 88 Cél : 07 07 40 68 46 / 01 02 50 24 90 E-mail : clima.kad «gmail.com info «cirma-cl.com
	24	BET-24/2016 CAT SARE	TAMBWE Mutualé Almé	 Etude technique et financière BTP, Industrie, Infrastructure de transport, Passation de marchés, Direction des travaux, Expertise, 	18 BP 2 787 Abidjan 18 Tél: 27 22 50 05 33 Cél: 07 07 08 27 87 E-mail: cal.blp «gmail.com almotambwe. «gmail.com
	25	BET-25/2016 ICCATEX INTERNATIONAL	DIABATE Lanciné	 Ingénierie, conseil, expertise, Electricité, plomberie, climatisation, Sécurité incendle, Voirles et réseaux divers, Bâtiments, ouvrages d'art, Trayaux maritimes. 	06 BP 319 Abidjan 06 Tel : 27 22 43 13 49 Cel : 07 48 13 17 00 / 07 07 09 65 97 Fox : 27 22 43 13 48 Email : lecatex.inter a gmail.com landlobate a gmail.com
1 1	26	BET-26/2018 CABINET CABIS	KOUAKOU Kouassi Daniel	- Bătiments, - Ouvrages d'art, routes et VRD, - Routes, aérodromes et voles ferrées, - Adduction d'eau, assainissement - Travaux maritimes et fluviaux, - Etablissements industriels Bâtiments.	20 BP 150 Abidjan 20 Tél: 27 22 55 29 52 Cél: 07 07 31 35 30 / 05 05 60 93 24 E-mail: Kolkoudani «yahoo.fr Cocody /lenne tranche carrelour les oscars ilot 299 lot 3674
1	27	BET-27/2019 CABINET IETF	KONE Souleymane	 Ouvrages d'art, roules et VRD, Routes, aérodromes et voles ferrées, Adduction d'eau, assainissement, Travaux maritimes et fluviaux, 	01 BP 12 840 Abidjan 01 Tél : 27 22 42 48 67 Cél :07 07 99 79 74 / 07 77 09 08 00 E-mail : let!_letf « yahoo.tr
	28	BET-28/2020 ACTIV' POLYTEC	BAKAYOKO Ibrahima	 Etablissements industriels. Bâtiments, Ouvrages d'art, routes et VRD, Routes, aérodromes et voies ferrées, Adduction d'eau, assainissement. Travaux maritimes et fluviaux, Etude d'impact environnemental et social. 	10 BP 2855 Abidjan 10 Téi : 27 20 22 91 17 Céi : 07 07 09 01 61 Fax : 27 20 22 83 61 Emall :activpolytec a gmail.com bakib8 4 yahoo.fr
	29	BET-29/2020 CATEP	OULAI Slaba Grégoire	Bâtiments, Ouvrages d'art, routes et VRD, Routes, aérodromes et voles terrées, Adduction d'eau, assainissement, Travaux maritimes et fluviaux, Etude d'impact environnemental et social.	04 BP 1258 Abidjan 04 Tál : 27 22 44 45 53 Cél : 07 07 22 03 09 Email catep a catep.cl oslaba a catep.cl www.catep.ci
-	30	SONEZERE INGENIERIE	YOH Mathlas	 Båtlments, aménagements urbains, Ouvrages d'art, VRD, assainissement, Routes, aérodromes et voies ferrées, Audits techniques et financiers, Etudes économiques, management de projets, formation, etc. 	04 8P 709 Abidjan 04T 6i : 27 22 50 15 59 C6i : 07 68 22 22 22 E-mail : son.ingenlerleconsells a gmail.com
	31	BEBSI	KO Hamidou	 Bâtiment, Routes, VRD, Charpente métallique, Charpente bols Ouvrages d'art. 	10 BP 417 Abidjan 10 Cél : 05 06 04 08 00 / 01 40 79 90 90 E-mail :bebsisaribtp = gmail.com

iii	NUMERO	NUMERO CHANIE		NEW YORK OF THE STREET, SALES	
	D'ORDRE	RAISON SOCIALE	DEDDECEMITANIT	DOMAINES DE SPECIALITE	ADRESSES POSTALE, TELEPHONIQUE, ELECTRONIQUE
1	32	BET-32/2021	BAKARY Camara	 Etudes, suivi et contrôle des travaux, Etude d'impact environnemental, Expertise de bâtiments et ouvrages d'art, Assistance à la maîtrise d'ouvrage (AMO), Maîtrise d'œuvre (MO). 	08 BP 2628 Abidjan 08 Tél : 27 24 31 80 01 Cél : 07 07 72 15 62 / 05 45 79 78 73 E-mail: Ingecoconseil égmail.com
		BET-33/2021		- Etudes d'ouvrages d'art et de VRD.	08 BP 4192 Abidjan 08
	33	AFRIQUE COSINUS CONSULTING (A.C.C)	HOUSSOU Konan Charles	 Etudes de structures en B.A et métalliques, Expertise immobilière et foncière, Etudes de stabilité et solidité de bâtiments, Suivi et maîtrise d'œuvre, 	Tel: 27 24 37 22 91/27 24 37 22 93 Cél: 05 05 00 94 76 / 01 03 17 39 88 E-mail: afriquecoslnus7 « gmail.com Charleskonan207 « gmail.com
	34	BUREC!	KONATE Yacouba	 Etudes, contrôles et expertise du génle civil, Routes et ouvrages d'art, Assainissement et environnement, Adduction d'eau, Voiries et réseaux divers (VRD), Bâtiments courants et industriels. 	08 BP 3224 Abidjan 08 T61: 27 22 40 26 83 C61: 05 05 06 26 33 / 07 08 59 78 71 / 07 49 63 38 44 E-mail: socialabureci a gmail.com confact a bureci.com www.burecl.com
1	35	BET-35/2021 IGECIM	VANIE BI Grah Noel	 Etudes techniques de structure bâtiment et ouvrage d'art, Etudes des projets de VRD pour les promotions immobilières, Maîtrise d'œuvre, 	25 BP 1026 Abidjan 25 Tél: 27 22 49 39 43 Cél: 07 07 38 97 56/ 07 07 55 02 02 E-mail : tgecimsari & gmail.com grahnoelvaniebi « gmail.com
_	36	STRUCTURE	SORO Sena	 Consultant en Investissement immobilier. Båtlments, Ouvrages d'art, routes et VRD, Adduction d'eau, assainissement, Travaux maritimes et fluviaux, Etude d'Impact environnemental et social, Expertise, conseil, formation. 	05 BP 1317 Abicijan 05 T6l: 27 21 79 36 46 Cel: 07 08 60 72 64 05 05 60 01 04 E-mall: structure_ingenierie = yahoo.fr Isorosenatresor = gmail.com
		BET-37/2022	KOHAME	- Etudes et techniques des structures des	
_	37	LAFFIND CONSULTANCY	KOUAME Lebaoulé Claude Laffind	ouvrages du génie civil, - Coordination et pilotage de projets, Assistance technique et consells, - Ouvrages d'art, routes, aérodromes, VRD,	Tél: 27 22 27 51 09 Cél 07 49 12 14 75 / 01 52 10 32 84 E-mail : Laffind.consullancy agmail.com kouama alaffindconsullancy.com 08 BP 3388 Abidjan 08
	38	BURGEAP COTE D'IVOIRE	GNEBA Godet Marcel Edouard	 Adduction d'eau, assainissement. Ingénierle du développement durable, Ingénierle de l'environnement, Ouvrages d'art, Adduction d'eau, assainissement, Voiries et réseaux divers (VRD), Electrification. 	BP 634 Cidex 03 T61: 27 27 49 59 26 / 27 22 49 59 27 C61: 01 02 02 80 80 E-mall: burgeap ngmall.com
	39	INFRATP INGENIEUR CONSEIL SARL	COULIBALY	- Eau, - Assainissement, - Bâtiments, - Ouvrages d'art, - Routes,	08 BP 3 772 Abidjan 08 Tel: 27 22 51 68 66 / Cel: 07 08 48 18 58 Fax: 27 22 51 68 66 E-mail: Seydou.coullbaly a yahoo.fr Seydou.coullbaly a Infratp.com
	40	BET-40/2023 BUREAU INTERNATIONAL INGENIERIE EXPERTISE & CONSEILS SARL (BIEC) BET-41/2023	KOUAME Kouakou Germain	 Environnement, énergle. Etudes, maîtrise d'œuvre, Assistance, conseil et formation, Adduction d'eau, assainissement et VRD, Bâtiments courants, immeubles de grandes hauteurs, établissements industriels, Ouvrages d'art. 	28 BP 1676 ABIDJAN 28 Cél: 07 09 77 82 39 /01 03 48 91 89 E-mail: equipobiac & gmail.com
	41	DESIGN ET CONTRÔLE TECHNIQUE IVOIRE (DCT IVOIRE)	AHMAD Mechaymech	 Ouvrages d'art, Assainissement, Bâtirnents courants, Immeubles de grandes hauteurs, Etabilssements industriels. 	Tél: 27 21 51 42 07 Cél: 07 00 15 61 62 E-mall: ahmad_mechayniech = hotmail.c om dclivaire = gmall.com

NUMERO D'ORDRE	NUMERO CHANIE	REPRESENTANT	DOMAINES DE SPECIALITE	ADRESSES POSTALE, TELEPHONIQUE, ELECTRONIQUE
42	GNONOGO INGENIEUR CONSEIL (GIC)	MONOKO GNONOGO	 Eau, Assainissement, Bâtiments, Ouvrages d'art, Routes, Environnement, énergie. 	01 BF 5655 Abid an 01 Cél : 07 49 34 34 32 / 07 69 70 30 30 E-mail : m.gnonogo @glc.ci secretarlat @glc.ci monokog@live.com www.gic.ci
43	CRESI ENGINEERING SARL COTE D'IVOIRE	FANE Youssouf	 Ouvrages d'art, Routes, aérodromes et voies terrées, Assainissement, volrie et réseaux divers, Travaux maritimes et fluviaux, Bâtiments courants, IGH, etc. Etablissements Industriels. 	06 BPM 381 ABIDJAN 06 Fixe: +225 27 22 336 748 Cellulaire: +225 0712100100 + 225 0101012912 E-mall: cresiportail@cresieng.com
44	BET-44/2024 EXXICAA-TB	TRA Bi Yrié Denis	 Bâtiments, Ouvrages d'art, Routes et VRD, Assainissement, environnement, énergie, Développement local, Développement urbain. 	01 BP 8 332 ABIDJAN 01 Cél: + 225 07 07 85 29 04 Tél: 27 33 80 30 12 E-mail: ceo@exxicaa-lb.com
45	BET-45/2024 EXPERTISE BTP	SORO Dolourou	 Infrastructures routières, VRD, Ouvrages d'art, Bâtiments, Génie rural, Electrification, Organisation, pilotage et coordination. 	08 BP 3 297 ABIDJAN 08 Cel: + 225 07 47 35 76 48 + 225 05 05 79 97 36 E-mail: expertotp@gmail.com s.dolourou@expertlsebtp.com panibras@yahoo fr
46	BET-46/2024 ZLS CONSULTING	LOLO Kovamelan José	 Ouvrages d'art, Routes, aérodromes et voies ferrées, Voirie et réseaux divers, Bâtiments courants, Etablissements Industriels. Etude d'impact environnemental et social 	22 BP 582 ABIDJAN 22 Cél: + 225 07 47 99 77 44 07 08 66 42 00 E-mail: j.lolo@zls-consulting.ci contact@zls-consulting.ci
47	BUREAU D'INGENIERIE ET CONSEIL (B.I.C)	KEITA Moriféré	 Études et contrôle techniques Ouvrages d'art, Adduction d'eau, assainissement, VRD, Bâtlments courants, bâtiments Industriels Infrastructures, transport et environnement Missions OPC, MOD, AMO et expertise 	17 BP 1049 ABIDJAN 17 Tél : 27 24 54 40 55 Cél : + 225 07 09 00 30 38 E-mail : blainteral@gmall.com keitamoiffere@yahoo.fr
48	BET-48/2024 SOGEEC-CI SARL	N'KPEOUDJE Serge	 Ouvrages d'art, routes, Adduction d'eau, assainissent, VRD, Bâtiments courants, Etablissements industriels, Missions OPC, AMO, MOD, 	01 BP 13005 ABIDJAN 01 Tél : 25 22 01 B4 31 Cél : + 225 07 08 08 37 92 E-mail : into Rsogeec.ci sogeeci Rgmail.com
49	EXPERTS ET CONSULTANTS D'AFRIQUE	NINTIN N'Tayé Jean Paul	 Ouvrages d'art, Routes, aérodromes et voies ferrées, Adduction d'eau, assainissement, VRD, Bâtiments courants, Immeubles de grandes hauteurs, Etablissements Industriels. 	01 aP 7901 ABIDJAN 01 Tél: 27 22 33 77 78 Cél: + 225 07 07 97 57 62 E-mail: expericonsullan1136 @gmail.com
50	BET-50/2025 SAPRESSI	ABDOU Camarou	 Ouvrages d'art, Routes, aérodromes et voies ferrées, Adduction d'eau, assainissement, VRD, Bâtiments courants, Immeubles de grandes hauteurs, Etablissements Industriels 	10 BP 2750 ABIDJAN 10 161 : 27 21 25 22 01 Cél : + 225 05 45 00 52 01 E-mail : camarou Esapressi.nel
51	AFRICAN ENGINEERING CONSULTING	ATSE Acho Parfait	 Ouvrages d'art, Routes, aérodromes et voies ferrées, Assainissement, Voirie et réseaux divers, Autres, 	04 BP 945 ABIDJAN 04 T6I: 27 21 79 63 04 C6I: + 225 07 07 01 69 82 E-mail: parfailtaise] 950/a gmgii.com

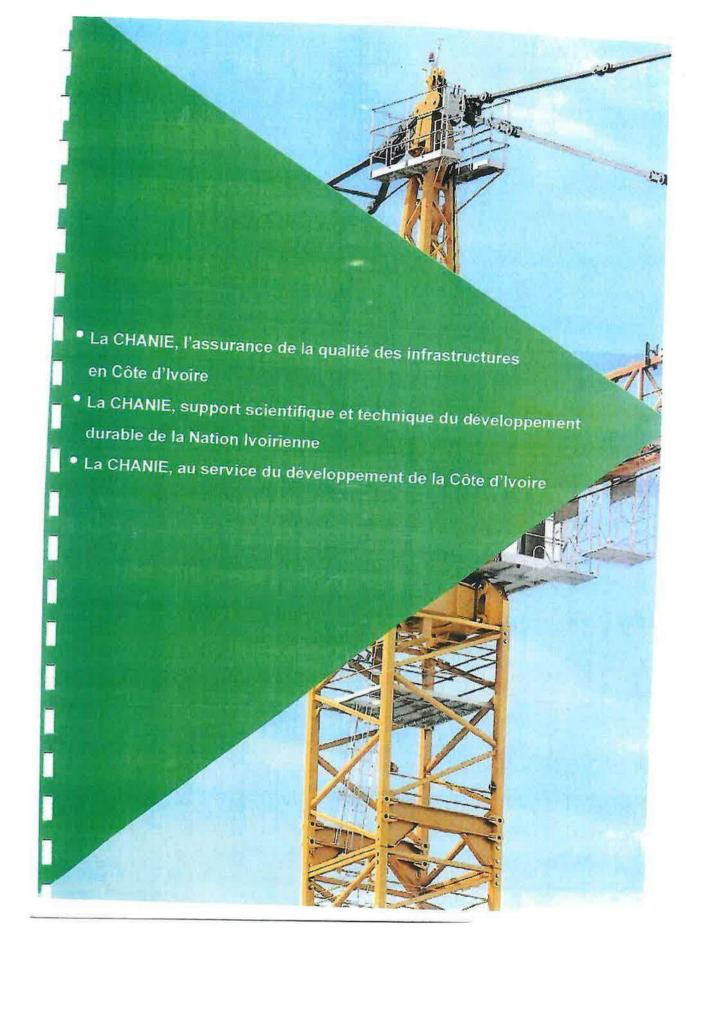
2 - AU TITRE DES INGENIEURS CONSEILS CHANIE

NUMERO	NUMERO CHANIE	DOMAINES	ADRESSES POSTALE
D'ORDRE	RAISON SOCIALE	DE SPECIALITE	TELEPHONIQUE.
			ELECTRONIQUE
1	IC-01/2011	 Consultance, Expertise, études, contrôle, supervision des travaux 	25 BP 1 771 ABIDJAN 25 Tél :27 22 47 57 69
	N'GUESSAN	d'infrastructures,	Cel: 07 07 47 47 47 Fax: 27 22 47 57 67 Email:
	Kouamé Célestin	- Transports,	Celestin.nguessan@g.com
	wandille CEIG2IIU	- Planification et gestion portuaire.	
2	IC-02/2016	 Réalisation d'études techniques, de bâtiments et de VRD, Organisation d'appel d'offres, 	06 BP 2 137 Abidlan 06
2	KOFFI Dabila	d'assistance technique,	Cél 07 07 43 51 31
	KOFFI Dabila	 Surveillance et contrôle de travaux. 	E-mall: koffl_dablia@yahoo.fr
		 Contrôle d'études architecturales. 	
	IC-03/2016	 Etudes et contrôle des travaux, 	
•		- Assainissement,	06 BP 6055 Abidjan 06
3	ANOH Angoua	 Voirie et réseaux divers, 	Tél :27 22 43 55 55
	Simon	- Bâtiments courants, immeubles de	Cél : 01 01 24 50 50 E-mall : s.anoh@yahoo.fr
		grandes hauteurs (IGH) et bâtiments à structures industriels.	L- Hail . S.O.JONE YOROO,IT
	IC-04/2017	 Etudes et contrôle des Infrastructures de transport, 	
4	GNAHOUA	 Etudes et contrôle des travaux de 	08 BP 2535 Abidjon 08 Cél :07 07 29 27 27 / 07 59 09 99 30
		bātiment,	E-mail: gnahouadau@gmail.com
	Adou Gilbert	Etudes techniques de tous les projets du BTP. Addustion alles avec et à la	
	IC 05/2010	 Adduction d'eau, assainissement, Voirie et réseaux divers, 	
5	IC-05/2019	- Bâtiments courants, immeubles de	25 BP 837 Abidjan 25
•	KONGO Kougssi	grandes hauteurs,	Cél: 07 79 54 54 18/ 01 02 03 14 84
	"OHOO KOOGSSI-	 Equipements techniques et Industriels. 	E-nail: kongokg11@gmail.com
	IC-07/2020	 Adduction d'eau, assainissement, 	
_		 Volrie et réseaux divers, 	Cel: +(225) 07 719 554
7	KOUADIO	- Bâtiments courants, immeubles de	+(225) 01 116 330 Emall : fkouadio_2010 «yahoo.fr
	N'Goran Firmin	grandes hauteurs, - Equipements techniques et	Email: Firmin.KOUADIO a ordre-experts
	is Goldii riimin	industriels.	internationaux.com
	IC-08/2020	 Adduction d'eau, assainissement, Voirie et réseaux divers, 	
8		- Bâtiments courants, immeubles de	23 BP 4065 Abidjan 23
•	DAGO	grandes hauteurs,	Céi: 05 05 62 96 64 / 01 40 10 78 08 E-mall: dagoyvan@yahoo.fr
	Yves Laurent	 Equipements techniques et industriels. 	dagoyroneyanag.ir
	10.00.10	- Ouvrages d'art,	
•	IC-09/2022	- Routes, VRD,	BP 836 Abldjan 08
9		 Adduction d'eau, assainissement, Travaux maritimes et fluviaux, 	Cél: 07 09 80 11 11 / 07 47 11 24 46 E-mail: info@centrale-projets.com
	DJE BI DJE Camille	Bâtiments courants, immeubles de	- Holl . Hillowcontrole-projets.com
		grandes hauteurs.	
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	 Routes, aérodromes et voles ferrées, 	
	IC-10/2022	- Voirie et Réseaux divers (VRD),	
		- Bâtiments courants.	BP 634 Cidex 03
10		Dalii libi lib Cooldi lib,	C41.07.07.00.07.47
10	TOA BI Gohouré Charles	- Immeubles de grandes hauteurs	Cél: 07 07 83 57 47 E-mall: tbcharles@gmail.coM


NUMERO D'ORDRE	NUMERO CHANIE	DOMAINES DE SPECIALITE	ADRESSES POSTALE, TELEPHONIQUE, ELECTRONIQUE
10	TOA B! Gohouré Charles	 Routes, aérodromes et voies ferrées, Voirie et Réseaux divers (VRD), Bâtiments courants, Immeubles de grandes hauteurs (IGH) et bâtiments à structures complexes. 	BP 634 Cidex 03 Cél : 07 07 83 57 47 E-mail : Ibcharles@gmail.coM
11	IC-11/2023 KPESSOKRO Christian Armel	 Ouvrages d'Art, Volrle et réseaux divers, Bâtiments courants, immeubles de grandes hauteurs, Etablissements Industriels, Equipements techniques. 	Cel 1 : + 225 07 47 89 10 28 Cel 2 :+ 33 6 16 31 60 17 E-mail : christiankpess@gmail.com
12	IC-12/2024 COULIBALY Zoumana	 Eau, assainissement, Bâtlments, Routes, Environnement, énergie. 	08 BP 3 772 Abidjan 08 Tél : 27 22 51 68 66 / Cél : 07 07 36 54 25 E-mail : zoumana.coulibaly@infratp.com inlo@infratp.com zoumcoulibalypro@gmail.com
13	IC-13/2024 ZAGUI Gnanago Guy Adolphe	 Ouvrage d'art, Routes Adduction d'eau, Assainissement, VRD, Bâtiments courants, Immeubles de grandes hauteurs et bâtiment à structures complexes. 	Tél: 01 02 50 10 21 / 07 78 74 72 38 PBV 24 ABIDJAN e-mail: adolphe.zaguy@yahoo.fr

CHAMBRE NATIONALE DES INGENIEURS-CONSEILS ET EXPERTS DE GENIE CIVIL DE COTE D'IVOIRE

MEMBRES DU BUREAU EXECUTIF



PRESTATIONS DE LA CHANIE

- Accréditation et Certification : La CHANIE établit des critères de compétence et de qualité pour les professionnels de chaque domaine. Elle délivre des certifications et des accréditations aux ingénieurs-conseils et experts qui répondent à ces critères.
- Formation Continue: Des formations et des séminaires sont organisés pour les membres (Bureaux d'Etudes Techniques & Ingénieurs Conseils) afin de les maintenir à jour avec les dernières avancées dans leur domaine.
- Code de Déontologie : La CHANIE établit un code de déontologie ou d'éthique professionnelle que les membres doivent suivre, garantissant ainsi des normes élevées de conduite professionnelle.
- Soutien Légal : La CHANIE offre une assistance juridique en cas de litiges professionnels ou de questions légales liées au domaine d'expertise.
- Promotion de la Profession : La CHANIE travaille à la promotion de la profession d'Ingénieurs Conseils et d'Experts auprès du public et des autorités gouvernementales, mettant en avant l'importance de la contribution des professionnels à la société.
- Normes et Règlements: Impliquée dans l'élaboration et la mise en place de normes et de réglementations pour garantir la qualité et la sécurité des travaux.
 - Réseautage: Fournit des occasions de réseautage professionnel permettant aux membres de se connecter avec d'autres experts et de partager des connaissances.
- Publication et Recherche: Publie des revues ou des documents de recherche dans ses domaines d'activités, contribuant à la diffusion des connaissances et à l'avancement des métiers d'Ingénieurs Conseils & Expert.
- Reconnaissance et Distinctions: Décernent des prix et des distinctions pour reconnaître l'excellence dans ses domaines et encourager la compétence professionnelle.
- Support aux Membres : Offre un soutien en répondant aux questions, fournissant des ressources professionnelles et en guidant dans la pratique.

ET NOTES DE CALCUL ABRI GROUPE ET TRANSFO CARNET DE FERRAILLAGE

NOTES DE CALCUL

NOTES DE CALCUL SOCLE ARME

SOCLE ARME POUR ABRI GROUPE 1.

1.1. Ferraillage:

Type : Coque BA

 Direction armatures principales : 0°

Classe armatures principales : FE 400; résistance caractéristique = 400.00 MPa Diamètres des barres inférieures d1 = 1.2 (cm) d2 = 1.2 (cm)

merieures supérieures d1 = 1.2 (cm) d2 = 1.2 (cm)

inférieur c1 = 3.0 (cm) Enrobage supérieur c2 = 3.0 (cm)

1.2. Béton

 Classe BETON; résistance caractéristique = 25.00 MPa

 Densité : 2501.36 (kG/m3)

1.3. Hypothèses

 Calculs suivant R NF EN 1992-1-1/NA:2007

· Méthode de calcul de la section d'acier : Analytique

Fissuration

- lit supérieur : X0 - lit inférieur : X0 Flèche admissible : 3.0 (cm) non

Vérification du poinçonnement Tenue au feu ∦1 h

Type de calcul flexion + compression/traction

1.4. Geométrie de la dalle

Epaisseur 0.30 (m)

Contour:

début x1	y1	fin x2	y2	longueur (m)
0.00	1.72	3.59	1.72	3.59
3.59	1.72	3.59	0.00	1.72
3.59	0.00	0.00	0.00	3.59
0.00	0.00	0.00	1.72	1.72
	x1 0.00 3.59 3.59	0.00 1.72 3.59 1.72 3.59 0.00	x1 y1 x2 0.00 1.72 3.59 3.59 1.72 3.59 3.59 0.00 0.00	x1 y1 x2 y2 0.00 1.72 3.59 1.72 3.59 1.72 3.59 0.00 3.59 0.00 0.00 0.00

Appui:

2				
n°	Nom	dimensions	coordonnées	bord
		(m)	х у	

^{* -} présence du chapiteau

1.5. Résultats des calculs:

1.5.1. Moments maximaux + ferraillage pour la flexion, compression/traction

Δ	\x(+)	Ax(-)	Ay(+)	Ay(-)

Ferraillage réelle (cm2/m):				
, succession,	6.28	9.42	9.42	5.14
Ferraillage théorique modifié (cm2/	/m):			
	6.17	6.68	7.86	4.93
Ferraillage théorique primaire (cm2	2/m):			
3 , , ,	6.17	6.68	7.86	4.93
Coordonnées (m):				
, ,	1.80;0.00	3.59;1.72	2.69;1.72	3.59;1.72

1.5.2. Moments maximaux + ferraillage pour la flexion, compression/traction

	Ax(+)	Ax(-)	Ay(+)	Ay(-)
Symboles: section théorique	e/section réelle			
Ax(+) (cm2/m)	6.17/6.28	4.52/6.28	5.82/6.28	4.52/6.28
Ax(-) (cm2/m)	0.00/4.71	6.68/9.42	0.00/9.42	6.68/9.42
Ay(+) (cm2/m)	4.52/4.71	7.86/9.42	7.86/9.42	7.86/9.42
Ay(-) (cm2/m)	4.52/5.14	4.93/5.14	4.52/5.14	4.93/5.14
	ELS			
Mxx (kN*m/m)	47.47	-46.20	2.79	-46.20
Myy (kN*m/m)	2.09	-28.94	57.45	-28.94
Mxy (kN*m/m)	-6.27	-7.32	-7.23	-7.32
, (,				
	ELU			
Mxx (kN*m/m)	64.08	-62.37	3.77	-62.37
Myy (kN*m/m)	2.82	-39.06	77.56	-39.06
Mxy (kN*m/m)	-8.46	-9.89	-9.77	-9.89
Coordonnées (m)	1.80;0.00	3.59;1.72	2.69;1.72	3.59;1.72
Coordonnées* (m)	1.80:0.00:0.00	3.59;1.72;0.00	2.69;1.72;0.00	
0001001111000 (111)	3.59;1.72;0.00	. ,		
	* - Coordonnées	dans le renère globa	al de la structure	

- Coordonnées dans le repère global de la structure

1.5.4. Flèche

 $|f(+)| = 0.0 \text{ (cm)} \le fdop(+) = 3.0 \text{ (cm)}$ $|f(-)| = 0.0 \text{ (cm)} \le fdop(-) = 3.0 \text{ (cm)}$

2. **Chargements:**

Cas	Type	Liste	Valeu	r
1	poids propre	1	PZ N	Moins
2	(EF) surfacique un	iforme	1	PZ=-7.74[kN/m2]

Définition Combinaison / Composante (1+2)*1.35+3*1.50 (2+3+1)*1.00 ELU/4 ELS/5

3. Résultats théoriques - disposition des armatures

Liste de solutions: Ferraillage par barres Solution no

Armatures Diamètre / Poids Poids total (kG) 109.66

Résultats pour la solution n° 1 Zones de ferraillage

Ferraillage inférieur						• .
Nom	coorde Ar	onnées			Armatures adoptées	At
	x1 [cm2/r	y1 nl	x2	y2	φ [mm] / [cm]	[cm2/m]
1/1-(1/2-) Ax Principal	-	0.86	3.59	1.72	12.0 / 12.0	6.68 <
1/2- Ax Principal	0.00 4.71	0.00	3.59	1.72	12.0 / 24.0	4.52 <
1/3- Ay Perpendiculair	e 4.93	0.00	0.00 5 .14	3.59	1.72	12.0 / 22.0
Ferraillage supérieur						
Nom	coordo Ar	onnées			Armatures adoptées	At
	x1 [cm2/n	y1 n]	x2	y2	φ [mm] / [cm]	[cm2/m]
1/1+ Ax Principal	0.00 6.28	0.00	3.59	1.72	12.0 / 18.0	6.17 <
1/2+(1/3+) Ay Perpend	diculaire 7.86	1.80	0.86 9.42	3.59	1.72	12.0 / 12.0
1/3+ Ay Perpendiculai	re 4.52	0.00	0.00 4.71	3.59	1.72	12.0 / 24.0

= 114.94 (kG) = 62.05 (kG/m3)

= 12.0 (mm)

4. Quantitatif

 Volume de Béton 	= 1.85 (m3)
 Surface de Coffrage 	= 6.17 (m2)
 Périmètre de la dalle 	= 10.62 (m)
 Superficie des réservations 	= 0.00 (m2)

Acier HA 400

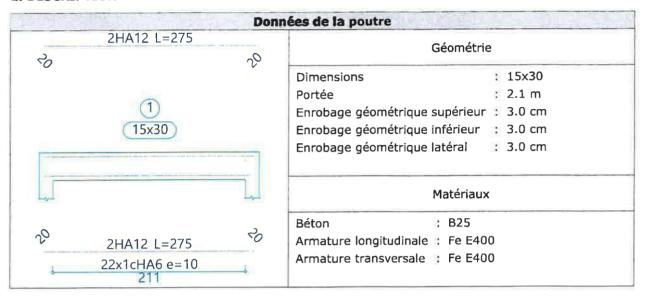
Poids total

Densité

Diamètre moyen

Liste par diamètres:

 Diamètre
 Longueur (m)
 Poids (kG)


 12
 129.42
 114.94

NOTE DE CALCUL SUPPORT SOCLE TRANSFO

INDEX

1.	DESCRIPTION	2
2.	RÉSUMÉ DES CONTRÔLES	2
3.	CONTRÔLES DE RÉSISTANCE	3
4.	CONTRÔLE DE LA FISSURATION	4
5.	VÉRIFICATIONS DE FLÈCHE	5

1. DESCRIPTION

2. RÉSUMÉ DES CONTRÔLES

Travée	CONTRÔLES DE RÉSISTANCE (BAEL 91 RÉVISÉ 99)	État
	-	
1: P11 - P13	N.V. ⁽¹⁾	NON NÉCESSAIRE
Notation: x: Distance à l'origine η: Taux de travail (% N.V.: Non nécessaire)	
Vérifications non réalisée. (") Il n'y a d'efforts pro	s (N.V.): oduisant des contraintes normales pour aucune combinaison. La vérification	n'a donc pas lieu.

Travée	VÉRIFICATIONS DE FISSURATION (BAEL 91 RÉVISÉ 99)	État
Havee	**	
1: P11 - P13	N.V. ⁽¹⁾	NON NÉCESSAIRE
Notation: -:-		
x: Distance à l'origi η: Taux de travail (N.V.: Non nécessai	%)	

Poutre	Active (Caractéristique) $f_{A,max} \le f_{A,lim}$ $f_{A,lim} = Min.(L/500, L/1000+5.00)$	État
1: P11 - P13	f _{A,max} : 0.04 mm f _{A,lim} : 4.21 mm	CONFORME

3. CONTRÔLES DE RÉSISTANCE

1: P11 - P13

Il n'y a d'efforts produisant des contraintes normales pour aucune combinaison. La vérification n'a donc pas

4. CONTRÔLE DE LA FISSURATION

1: P11 - P13

Il n'y a d'efforts produisant des contraintes normales pour aucune combinaison. La vérification n'a donc pas

5. VÉRIFICATIONS DE FLÈCHE

Flèche active à partir de l'instant "3 mois", pour la combinaison d'actions "Caractéristique"

La flèche maximale est produite dans la section "1.05 m" pour la combinaison d'action: Poids propre+Charges permanentes - Parois intérieures+Charges permanentes - Revêtement+Charge d'exploitation

 $f_{A,max} \leq f_{A,lim}$

 $f_{A,lim}$: limite établie pour la flèche active $f_{A,lim} = Min.(L/500, L/1000+5.00)$

L: lonqueur de référence

 $\mathbf{f}_{A,max}$: flèche active maximale produite à partir de l'instant "3 mois" Flèche produite à partir de l'instant "3 mois", calculée comme la

Flèche produite à partir de l'instant "3 mois", calculée comme la différence entre la flèche totale maximale et la flèche instantanée due à l'ensemble des charges permanentes produite jusqu'à l'instant f(t_{ed})

 $\Delta f_{t,max} = f_{gv} + f_{qi} - (f_{jl} + f_{gi}) = f_{T,max} - f(t_{ed})$

Où:

f_{t,max}: valeur maximale de la flèche totale

Flèche totale à l'infini:

 $f_{\text{T,max}} = f_{\text{gv}} + f_{\text{qi}}$

 $\mathbf{f}_{\mathbf{gv}}$: flèche de longue durée due à l'ensemble des charges permanentes

f_{gv}: 0.05

 $\mathbf{f}_{\mathsf{T,max}}$: 0.05

0.04 mm ≤ 4.21 mm ✓

L: 2.11

4.21

0.04

f_{A,lim} :

mm

mm

mm

m

mm

Échelon de charge	t,	q(t _i)	Combinaison d'actions	E _{v,m} (MPa)	I _{fv} (cm4)	f _{gv} (mm)	Δf_{gv} (mm)	f _{gv,max} (mm)
1	28 jours	Poids propre	Poids propre	10721.40	33750.00	0.04	0.04	0.04
2	90 jours	Charges permanentes - Parois intérieures	Poids propre+Charges permanentes - Parois intérieures	10902.83	33750.00	0.04	0.00	0.04
3	120 jours	Charges permanentes - Revêtement	Poids propre+Charges permanentes - Parois intérieures+Charges permanentes - Revêtement	10962.80	33750.00	0.05	0.00	0.05
4	12 mois	Charge d'exploitation,V 1,V 2	Poids propre+Charges permanentes - Parois intérieures+Charges permanentes - Revêtement+Charge d'exploitation	10990.74	33750.00	0.05	0.00	0.05

Où:

t_i: instant initial de chaque intervalle de charge 'i'

q(t_i): charge appliquée à l'instant initial 't_i'

Intervalle de charge	t,	t _f	Combinaison d'actions	E _{vj} (MPa)	\mathbf{Q}_{i}	E _{vj,m} (MPa)
1-2	28 jours	90 jours	Poids propre	10721.40	0.075	10721.40
2-3	90 jours	120 jours	Poids propre+Charges permanentes - Parois intérieures	11067.49	0.083	10902.83

Intervalle de charge	t,	t _r	Combinaison d'actions	E _{vj} (MPa)	Qi	E _{vj,m} (MPa)
3-4	120 jours	12 mois	Poids propre+Charges permanentes - Parois intérieures+Charges permanentes - Revêtement	11067.49	0.09	10962.80
4-∞	12 mois	60 .	Poids propre+Charges permanentes - Parois intérieures+Charges permanentes - Revêtement+Charge d'exploitation	11067.49	0.09	10990.74

 \mathbf{E}_{vi} : module de déformation longitudinale différée du béton à «j» jours

$$E_{ii} = 3700 \cdot f_{ci}^{1/3}$$

 f_{4} : résistance caractéristique à la compression à j jours Pour $f_{c28} \le 40$ MPa:

$$f_{o} = \frac{j}{4.76 + 0.83 \cdot j} f_{c28}$$
 pour j \le 60 jours

$$f_{cj} = 1.10 \cdot f_{c28}$$
 pour j > 60 jours

Pour $f_{c28} > 40$ MPa:

$$f_{cj} = \frac{j}{1.40 + 0.95 \cdot j} f_{c28}$$
 pour j \le 60 jours

$$f_{ij} = 1.03 \cdot f_{c28}$$
 pour j > 60 jours

 \mathbf{f}_{c28} : résistance caractéristique à la compression à 28 jours

 $\mathbf{E}_{\mathbf{v}_{i,m}}$: module moyen de déformation longitudinale différée

Il est calculé par pondération du module de déformation longitudinale différée associé à chaque charge en fonction de la flèche instantanée produite pour chacune d'elles (bien que la norme BAEL-91 ne donne aucune indication sur la manière de calculer ce coefficient lorsque la totalité de la charge est appliquée, non pas au même instant, mais par échelons, ce critère est celui utilisé dans plusieurs publications relatives au calcul des flèches)

$$E_{v_1,m} = \frac{E_{v_1} \cdot Q_1 + E_{v_2} \cdot Q_2 + ... + E_{v_i} \cdot Q_i}{Q_1 + Q_2 + ... + Q_i}$$

 \mathbf{E}_{vi} : module de déformation longitudinale différée pour l'instant \mathbf{t}_i

 \mathbf{Q}_i : effort tranchant associé aux charges appliquées à l'instant t_i

$$Q_i = \left| \frac{Q_{i,e1} - Q_{i,e2}}{I} \right|$$

 $\mathbf{Q}_{i,e1}$, $\mathbf{Q}_{i,e2}$: efforts tranchants aux extrémités du tronçon dus aux charges appliquées à l'instant t_i

I: longueur du tronçon

 \mathbf{I}_{fv} : moment d'inertie fictif pour les déformations de longue durée pour chaque échelon de charge

f_{c28} : 25.00 MPa

Elle est obtenue comme étant la plus petite inertie parmi celles calculées pour toutes les combinaisons possibles caractéristiques des charges appliquées à cet échelon. On considérera toujours la valeur la plus défavorable calculée jusqu'à cet instant.

Échelon de charge	t,	Q(t _i)	I _{rv,v,j} (cm4)	I _{∾.i} (cm4)
1	28 jours	Poids propre	33750.00	33750.00
2	90 jours	Poids propre, Charges permanentes - Parois intérieures	33750.00	33750.00
3	120 jours	Poids propre, Charges permanentes - Parois intérieures, Charges permanentes - Revêtement	33750.00	33750.00
4	12 mois	Poids propre,Charges permanentes - Parois intérieures,Charges permanentes - Revêtement,Charge d'exploitation,V 1,V 2	33750.00	33750.00

Où:

t_i: instant initial de chaque intervalle de charge 'i'
 Q(t_i): charges qui agissent à partir de l'instant t_i

I_{N,i}: moment d'inertie fictif pour les déformations de longue durée de la poutre considérée pour l'échelon de charge "i". C'est la valeur la plus défavorable de tous les calculs jusqu'à cet instant.

$$I_{fi,i} = MIN_{i=1}^{i=1}(I_{fi,i,i})$$

I_{fv,v,i}: moment d'inertie fictif pour les déformations de longue durée de la poutre calculée pour l'échelon de charge "i"

Est affiché ci-après le développement de la valeur la plus défavorable de $I_{N,v}$, produite pour l'échelon de charge "2"

I_{N,v}: moment d'inertie fictif pour les déformations de longue durée de la poutre pour la combinaison "Poids propre+Charges permanentes - Parois intérieures"

Elle est calculée en assimilant la poutre à l'un des cas type définis par la norme en fonction du diagramme de moments résultant. Lorsque la comparaison avec un unique cas type est impossible, ceux-ci sont interpolés linéairement, de façon à ce que le moment d'inertie fictif puisse être exprimée comme combinaison des inerties définies pour ces cas:

$$\begin{split} &I_{\text{f,coutre}} = \alpha_{\text{A}} \cdot I_{\text{f,cas A}} + \alpha_{\text{B}} \cdot I_{\text{f,cas B}} + \alpha_{\text{C}} \cdot I_{\text{f,cas C}} + \\ &\alpha_{\text{D}} \cdot I_{\text{f,cas D}} \end{split}$$

Où:

cas A	cas B	cas C	cas D
Éléments simplement appuyés	Travées internes d'éléments continus	Travées externes avec continuité seulement dans l'un des appuis	Éléments en porte-à-faux
$I_t = I_t$	$I_f = 0.50I_{fc} + 0.25(I_{fe1} + I_{fe2})$	$I_r = 0.75I_{fc} + 0.25I_{fe}$	$I_{f} = I_{fe}$

I_{fv,v}: 33750.00 cm4

α_i: coefficient de combinaison pour le cas 'i'

α_{A}	αв	a _B a _{C1}		α_{D1}	α _{D2}
0.89	0	0	0	0.054	0.054

I_{N,c}: moment d'inertie fictif pour les déformations de longue durée pour les déformations instantanées de la section de centre de travée

I_{fv,c}: 33750.00 cm4

I_{N,e1}: moment d'inertie fictif pour les déformations de longue durée de la section d'extrémité (1)

I_{fv,e1}: 33750.00 cm4

I_{w,e2}: moment d'inertie fictif pour les déformations de longue durée de la section d'extrémité (2)

I_{fv,e2}: 33750.00 cm4

Il est calculé selon la formule suivante:

$$I_{j_b} \le I_b = 1.1 \frac{I_a}{1 + \lambda_i \cdot \mu} \le I_b \qquad M_a \ge M_f$$

$$I_{fb} = I_b \qquad M_a < M_f$$

Section	I₅ (cm4)	I _{fis} (cm4)	I₀ (cm4)	M _f (kN·m)	M₃ (kN·m)	b₀ (mm)	b (mm)	ρ	σ₅ (MPa)	λ,	μ	I _{fv} (cm4)
Extrémité (1)	33750.00	-	120		-0.096	- 3	-	-	U.B.O	3	-	33750.00
Centre de travée	33750.00	-	(e 0)	5.370	0.353	-		-	-	÷	-	33750.00
Extrémité (2)	33750.00	-	9	-5.205	-0.096	2	æ	-	2	2	-	33750.00

Avec:

I_b: moment d'inertie de la section brute

I_{fis}: moment d'inertie de la section fissurée

I_o: moment d'inertie de la section totale rendue homogène

M_f: moment de fissuration de la section

M_a: moment fléchissant appliqué à la section

λ_v: coefficient pour le calcul de l'inertie fictif pour les déformations de longue durée

$$\lambda_v = 0.02 \frac{f_{r28}}{\left(2 + 3\frac{b_0}{b}\right) \cdot \rho}$$

 μ : coefficient pour le calcul de l'inertie fictive

$$\mu = 1 - 1.75 \frac{f_{t28}}{4 \cdot \rho \cdot \sigma_{x} + f_{t28}} \ge 0$$

f₁₂₈: résistance caractéristique à la traction du béton à 28 jours

f_{t28}: 2.10 MPa

$$f_{128} = 0.6 + 0.06 f_{c28}$$

f_{c28}: résistance caractéristique à la compression à 28 jours

f_{c28} : 25.00 MPa

b_o: largeur de la nervure

b: largeur de la table de compression

 ρ : «pourcentage» ou rapport de l'aire A de la section de l'armature tendue à l'aire de la section utile de la nervure ρ =

 $A / b_o \cdot d$

σ_s: contrainte de traction effective de l'armature correspondant au cas de charge considéré

 $\mathbf{f}_{\mathbf{q}i}$: flèche instantanée produite par les charges d'exploitation appliquées

f_{qi}: 0.00 mm

Échelon de charge	t,	q(t _i)	Combinaison d'actions	E _{ij} (MPa)	I _f (cm4)	f _i (mm)	∆f _i (mm)	f _{ql,max} (mm)	
1	28 jours	Poids propre	Poids propre	32164.20	33750.00	0.01	0.01	0.00	
2	90 jours	Charges permanentes - Parois intérieures	Poids propre+Charges permanentes - Parois intérieures	33202.46	33750.00	0.01	0.00	0.00	
3	120 jours	Charges permanentes - Revêtement	Poids propre+Charges permanentes - Parois intérieures+Charges permanentes - Revêtement	33202.46	33750.00	0.02	0.00	0.00	
4	12 mois	Charge d'exploitation,V 1,V 2	Poids propre+Charges permanentes - Parois intérieures+Charges permanentes - Revêtement+Charge d'exploitation	33202.46	33750.00	0.02	0.00	0.00	

Où:

t_i: instant initial de chaque intervalle de charge 'i'

q(ti): charge appliquée à l'instant initial 'ti'

 \mathbf{f}_i : flèche instantanée totale due à l'ensemble des charges qui agissent à l'instant \mathbf{t}_i

 Δf_i : incrément de flèche instantanée due à la charge appliquée à l'instant t_i , calculé comme étant la différence des flèches instantanées totales des instants t_i et t_{i-1} .

f_{ql,max}: valeur maximale de la flèche instantanée due aux charges d'exploitation produite jusqu'à l'instant t_i

 \mathbf{E}_{ij} : module de déformation longitudinale instantanée du béton à 'j' jours

$$E_{ij} = 11000 \cdot f_{cj}^{1+3}$$

 \mathbf{f}_{ej} : résistance caractéristique à la compression à j jours Pour $f_{e28} \leq 40$ MPa:

$$f_{cj} = \frac{f}{4.76 + 0.83 \cdot j} f_{c28}$$
 pour j \le 60 jours

$$f_{cj} = 1.10 \cdot f_{c28}$$
 pour j > 60 jours

Pour $f_{c28} > 40$ MPa:

$$f_{cj} = \frac{f}{1.40 + 0.95 \cdot f} f_{c28}$$
 pour j \le 60 jours

 $f_{ij} = 1.03 \cdot f_{c28}$ pour j > 60 jours

 $\mathbf{f}_{\mathtt{c28}}$: résistance caractéristique à la compression à 28 jours

f_{c28} : 25.00 MPa

In: moment d'inertie fictif pour les déformations instantanées de la poutre pour chaque échelon de charge Elle est obtenue comme étant la plus petite inertie parmi celles calculées pour toutes les combinaisons possibles caractéristiques des charges appliquées à cet échelon. On considérera toujours la valeur la plus défavorable calculée jusqu'à cet instant.

Échelon de charge	t _i	Q(t _i)	I _{fi,v,j} (cm4)	I _{fi,j} (cm4)
1	28 jours	Poids propre	33750.00	33750.00
2	90 jours	Poids propre,Charges permanentes - Parois intérieures	33750.00	33750.00
3	120 jours	Poids propre,Charges permanentes - Parois intérieures,Charges permanentes - Revêtement	33750.00	33750.00
4	12 mois	Poids propre,Charges permanentes - Parois intérieures,Charges permanentes - Revêtement,Charge d'exploitation,V 1,V 2	33750.00	33750.00

Où:

t_i: instant initial de chaque intervalle de charge 'i' **O(t**_i): charges qui agissent à partir de l'instant t_i

 $\mathbf{I}_{\mathrm{fi,i}}$: moment d'inertie fictif pour les déformations instantanées de la poutre considérée pour l'échelon de charge "i". C'est la valeur la plus défavorable de tous les calculs jusqu'à cet instant.

$$I_{f_{i,i}} = MIN_{i=1}^{i=j}(I_{f_{i,i+1}})$$

 $\mathbf{I}_{n,\nu,i}$: moment d'inertie fictif pour les déformations instantanées de la poutre calculée pour l'échelon de charge "i"

Est affiché ci-après le développement de la valeur la plus défavorable de $I_{\text{f,v}}$, produite pour l'échelon de charge "2"

I_{n,v}: moment d'inertie fictif pour les déformations instantanées de la poutre pour la combinaison "Poids propre+Charges permanentes - Parois intérieures"

Elle est calculée en assimilant la poutre à l'un des cas type définis par la norme en fonction du diagramme de moments résultant. Lorsque la comparaison avec un unique cas type est impossible, ceux-ci sont interpolés linéairement, de façon à ce que le moment d'inertie fictif puisse être exprimée comme combinaison des inerties définies pour ces cas:

$$\begin{split} I_{\text{f,poutre}} &= \alpha_{\text{A}} \cdot I_{\text{f,cas A}} + \alpha_{\text{B}} \cdot I_{\text{f,cas B}} + \alpha_{\text{C}} \cdot I_{\text{f,cas C}} + \\ \alpha_{\text{D}} \cdot I_{\text{f,cas D}} \end{split}$$

Où:

I_{n,v}: 33750.00 cm4

cas A	cas B	cas C	cas D
Éléments simplement appuyés	Travées internes d'éléments continus	Travées externes avec continuité seulement dans l'un des appuis	Éléments en porte-à-faux
$I_t = I_{fc}$	$I_f = 0.50I_{fc} + 0.25(I_{fe1} + I_{fe2})$	$I_f = 0.75I_{fc} + 0.25I_{fe}$	$I_f = I_{fe}$

 $\alpha_i \colon$ coefficient de combinaison pour le cas 'i'

α_{A}	αв	O _{C1}	α _{C2}	α_{D1}	α _{D2}		
0.89	0	0	0	0.054	0.054		

 $I_{\eta,c}$: moment d'inertie fictif pour les déformations instantanées de la section de centre de travée

 $I_{n,e1}$: moment d'inertie fictif pour les déformations instantanées de la section d'extrémité (1)

 $I_{n,e2}$: moment d'inertie fictif pour les déformations instantanées de la section d'extrémité (2)

Il est calculé selon la formule suivante:

$$I_{jic} \le I_{ji} = 1.1 \frac{I_{ii}}{1 + \lambda_i \cdot \mu} \le I_{k} \qquad M_{ii} \ge M_{ji}$$

$$I_{fi} = I_b$$
 $M_a < M_f$

Section	I₀ (cm4)	I _{fis} (cm4)	I ₀ (cm4)	M _f (kN·m)	M _a (kN·m)	b _o (mm)	b (mm)	ρ	σ₅ (MPa)	λ	μ	I _f (cm4)
Extrémité (1)	33750.00	-	72	-5.205	-0.096	≆	:::	-	-	-	-	33750.00
Centre de travée	33750.00	:e	115	5.370	0.353		-	-	-	-	-	33750.00
Extrémité (2)	33750.00	12	5	-5.205	-0.096	<u>.</u>		=	-	-		33750.00

Avec:

 \mathbf{I}_{b} : moment d'inertie de la section brute

I_{fis}: moment d'inertie de la section fissurée

 $\mathbf{I_0}$: moment d'inertie de la section totale rendue homogène

 $\mathbf{M}_{\mathbf{f}}$: moment de fissuration de la section

M_a: moment fléchissant appliqué à la section

 λ_{l} : coefficient pour le calcul de l'inertie fictive instantanée

$$\lambda_{i} = 0.05 \frac{f_{i2N}}{\left(2 + 3\frac{b_{0}}{b}\right) \cdot \rho}$$

μ: coefficient pour le calcul de l'inertie fictive

$$\mu = 1 - 1.75 \frac{f_{t28}}{4 \cdot \rho \cdot \sigma_s + f_{t28}} \ge 0$$

I_{ri,c}: 33750.00 cm4

I_{fl,e1}: 33750.00 cm4

I_{fi,e2}: 33750.00 cm4

 f_{t28} : résistance caractéristique à la traction du béton à 28 jours

f_{t28} : 2.10 MPa

 $f_{c28} = 0.6 + 0.06 f_{c28}$

f_{c28}: résistance caractéristique à la compression à 28 jours

f_{c28} : 25.00 MPa

b₀: largeur de la nervure

b: largeur de la table de compression ρ : «pourcentage» ou rapport de l'aire A de la section de l'armature tendue à l'aire de la section utile de la nervure $\rho = A / b_0 \cdot d$

σ_s: contrainte de traction effective de l'armature correspondant au cas de charge considéré

charge considéré
iusqu'à l'instant t_{or} **f(t**_{ed}) : 0.01 mm

 $\mathbf{f(t_{ed})}$: flèche instantanée produite jusqu'à l'instant $\mathbf{t_{ed}}$

 $f(t_{ed}) = f_{ij} + f_{ed}$

 $f_{\mathfrak{g}i} \colon$ flèche instantanée due à l'ensemble des charges permanentes produite jusqu'à l'instant $t_{\rm ed}$

 $f_{\rm ji} :$ flèche instantanée due à l'ensemble des charges permanentes appliquées à l'instant $t_{\rm ed}$

NOTE DE CALCUL PROFILE METALLIQUE

NOTE DE CALCUL TUBE ROND 60.2mm

1

Profilé: TUBE ROND 60.2mm Matériau: Acier (S235 (EN 1993-1-1))

z

1333-1-	1))					DESCRIPTION OF
Noe	uds		Cai	ractéristique	es mécaniq	ues
Initial	Final	Longueur (m)	Aire (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N8	N9	0.280	3.64	15.34	15.34	30.68

(1) Inertie par rapport à l'axe indiqué

(2) Moment d'inertie	e à	la	torsion	uniforme
----------------------	-----	----	---------	----------

	Flamb	ement	Déversement	
	Plan XY	Plan XZ	Aile sup.	Aile inf.
β	1.00	1.00	0.00	0.00
L _K	0.280	0.280	0.000	0.000
Cm	1.000	1.000	1.000	1.000
C ₁			1.0	00

Notation:

β: Coefficient de flambement

C_n: Coefficient de moments C_n: Facteur de modification pour le moment critique

V				VÉRIFICA	TIONS (E	UROCODE	3 NF EN	1993-1-	L/NA: 2007	7-05)				État
Вапте	N,	N _c	M,	Mz	V ₂	V _Y	M,Vz	M _z V _v	NM,M.	NM _z M _z V _z V _z	M,	M _z V _z	M _t V _Y	Clat
NO (NO	x: 0.28 m	$N_{ed} = 0.00$	x: 0.28 m	x: 0 m	x: 0 m	1 2	x: 0 m	0 1	x: 0 m	n < 0.1	n = 0.9	x: 0 m	x: 0 m	CONFORME η = 13.3
N8/N9	$\pi = 7.0$	N.V.(1)	n = 0.6	η = 5.7	$\eta = 0.2$	η = 1.3	$\eta < 0.1$	η < 0.1	$\eta = 13.3$	11 < 0.1	11 - 0.5	$\eta = 0.3$	$\eta = 0.3$	η = 13.3

otation:

N.; Résistance à la traction
N.; Résistance à la flexion suivant l'axe Y
M.; Résistance à la flexion suivant l'axe Y
M.; Résistance à la flexion suivant l'axe Z
V.; Résistance au clisallement Z
V.; Résistance au clisallement Y
M.V.; Résistance au moment fléchissant Y et à l'effort tranchant Z combinés
M.V.; Résistance au moment fléchissant Z et à l'effort tranchant Y combinés
N.M.M.; Résistance à la flexion et à l'effort normal combinés
N.M.M.V.V.; Résistance à la flexion et à l'effort normal et à l'effort tranchant combinés
M.; Résistance à la flexion et à l'effort normal et à l'effort tranchant combinés
M.V.; Résistance à l'effort tranchant Z et au moment de torsion combinés
M.V.; Résistance à l'effort tranchant Y et au moment de torsion combinés
x: Distance à l'origine de la barre
n; Taux de travail (%)
N.V.: Non nécessaire

vifications non réalisées (N.V.):

Vérifications non réalisées (N.V.):
"La vérification n'est pas réalisée car il n'y a pas d'effort normal de compression.

Résistance à la traction (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.3)

Doit être respecté:

$$\eta = \frac{N_{t, Ed}}{N_{t, Rd}} \leq 1$$

η: **0.070** ✓

L'effort sollicitant de calcul défavorable se produit au noeud N9, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

N_{LEd}: Effort normal de traction sollicitant de calcul défavorable.

 $N_{t,Ed}$: 5.96 _kN

La résistance de calcul à la traction N_{t,Rd} est donnée par:

$$\mathbf{N}_{\mathsf{t,Rd}} = \mathsf{A} \cdot \mathsf{f}_{\mathsf{yd}}$$

85.64 kN

Où:

A: Aire brute de la section transversale de la barre.

3.64 cm²

f_{vd}: Résistance de calcul de l'acier.

f_{yd} : 235.00 MPa

$$\mathbf{f_{vd}} = f_v / \gamma_{MO}$$

Avec:

 f_v : Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:

2007-05, Tableau 3.1)

f_v: 235.00 MPa

γ_{Mo}: Coefficient partiel de sécurité du matériau.

γмо ∶ 1.00

Résistance à la compression (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.4)

La vérification n'est pas réalisée car il n'y a pas d'effort normal de compression.

Résistance à la flexion suivant l'axe Y (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.5)

Doit être respecté:

$$\eta = \frac{M_{\text{Ed}}}{M_{\text{c,Rd}}} \le 1$$

η: **0.006** √

0.01

6.73 cm³

f_v : 235.00 MPa

Classe :

kN·m

Pour la flexion positive:

L'effort sollicitant de calcul défavorable se produit au noeud N9, pour la combinaison d'actions PP+1.35·G1+1.5·Q1.

M_{Ed}⁺: Moment fléchissant sollicitant de calcul le plus défavorable.

Pour la flexion négative: M_{Ed}: Moment fléchissant sollicitant de calcul le plus défavorable. kN⋅m 0.00 Le moment fléchissant résistant de calcul $\mathbf{M}_{c,Rd}$ est donné par:

 $\mathbf{M}_{c,Rd} = W_{pl,v} \cdot f_{vd}$ kN⋅m 1.58

Où:

Classe: Classe de la section, selon la capacité de déformation et de développement de la résistance plastique des éléments plans d'une section à flexion simple.

W_{pl,y}: Module résistant plastique correspondant à la fibre de plus grande tension, pour les sections de classe 1 et 2.

f_{vd}: 235.00 MPa f_{vd}: Résistance de calcul de l'acier.

 $\mathbf{f}_{vd} = \mathbf{f}_{v} / \gamma_{MO}$

Avec:

f_y: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)

γмо : 1.00 Ymo: Coefficient partiel de sécurité du matériau.

Résistance à la flexion suivant l'axe Z (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.5)

Doit être respecté:

 $\eta = \frac{M_{Ed}}{M_{east}} \le 1$ η: **0.057** √

Pour la flexion positive:

M_{Ed}⁺: Moment fléchissant sollicitant de calcul le plus défavorable. M_{Ed}⁺: kN·m 0.00 Pour la flexion négative:

L'effort sollicitant de calcul défavorable se produit au noeud N8, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1.

M_{Ed}: Moment fléchissant sollicitant de calcul le plus défavorable. Med : kN·m 0.09

Le moment fléchissant résistant de calcul M_{c,Rd} est donné par:

 $\mathbf{M}_{c,Rd} = \mathbf{W}_{pl,z} \cdot \mathbf{f}_{vd}$ 1.58 kN⋅m

Où:

Classe: Classe de la section, selon la capacité de déformation et de Classe : développement de la résistance plastique des éléments plans d'une section à flexion simple.

W_{pl,z}: Module résistant plastique correspondant à la fibre de plus 6.73 cm³ grande tension, pour les sections de classe 1 et 2.

f_{vd}: Résistance de calcul de l'acier. f_{vd}: 235.00 MPa

 $\mathbf{f_{vd}} = \mathbf{f_v} / \gamma_{MO}$

Avec:

f_v: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)

f_v: 235.00 MPa γ_{мα}: Coefficient partiel de sécurité du matériau. **Умо** : 1.00

Résistance au cisaillement Z (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.6)

Doit être respecté:

 $\eta = \frac{V_{Ed}}{V_{c,Pd}} \le 1$ η: 0.002 √

L'effort sollicitant de calcul défavorable se produit au noeud N8, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1.

V_{ed}: Effort tranchant sollicitant de calcul le plus défavorable. V_{Ed} : kΝ 0.08

Résistance au cisaillement de la section:

L'effort tranchant résistant de calcul V_{c,Rd} est donné par:

 $V_{c,Rd} = A_v \cdot \frac{f_{yd}}{\sqrt{3}}$ 31.48 kN

Où:

A..: Aire transversale au cisaillement. 2.32 cm²

 $\mathbf{A_v} = 2 \cdot \mathbf{A}/\pi$

Avec:

A: Aire de la section brute. cm² A: 3.64

f_{vd}: Résistance de calcul de l'acier. **f**_{vd}: 235.00 MPa

 $\mathbf{f_{vd}} = f_v / \gamma_{MO}$

Avec:

f.: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1) f_v: 235.00 MPa γ_{мα}: Coefficient partiel de sécurité du matériau. Yмо: 1.00

Résistance au cisaillement Y (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.6)

Doit être respecté:

$$\eta = \frac{V_{\text{Ed}}}{V_{c,\text{Rd}}} \leq 1$$

η: **0.013 V**

L'effort sollicitant de calcul défavorable se produit pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

V_{st}: Effort tranchant sollicitant de calcul le plus défavorable.

0.40 kN V_{Ed} :

Résistance au cisaillement de la section:

L'effort tranchant résistant de calcul $\mathbf{V}_{c,Rd}$ est donné par:

$$\boldsymbol{V_{c,Rd}} = \boldsymbol{A}_{v} \cdot \frac{f_{vd}}{\sqrt{3}}$$

31.48 kN

A_v: Aire transversale au cisaillement.

cm² 2.32

 $\mathbf{A}_{v} = 2 \cdot \mathbf{A}/\pi$

Avec:

A: Aire de la section brute.

cm²3.64

f_{vd}: Résistance de calcul de l'acier.

f_{vd} : 235.00 MPa

 $\mathbf{f_{vd}} = \mathbf{f_v} / \gamma_{M0}$

Avec:

f_v: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)

f_v: 235.00 MPa

γ_{ma}: Coefficient partiel de sécurité du matériau.

γмо 🤄 1.00

Résistance au moment fléchissant Y et à l'effort tranchant Z combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.8)

Il n'est pas nécessaire de réduire la résistance de calcul à la flexion étant donné que le renfort à l'effort tranchant sollicitant de calcul défavorable V_{Ed} n'est pas supérieur à 50% de la résistance de calcul à l'effort tranchant V_{c,Rd}.

$$V_{Ed} \leq \frac{V_{c,Rd}}{2}$$

0.08 kN ≤ 15.74 kN **√**

Les efforts sollicitants de calcul défavorables se produisent au noeud N8, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1.

V_{et}: Effort tranchant sollicitant de calcul le plus défavorable.

 V_{Ed} :

0.08 kΝ

V_{c.Rd}: Effort tranchant résistant de calcul.

 $V_{c,Rd}$:

31.48 kΝ

Résistance au moment fléchissant Z et à l'effort tranchant Y combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.8)

Il n'est pas nécessaire de réduire la résistance de calcul à la flexion étant donné que le renfort à l'effort tranchant sollicitant de calcul défavorable V_{Ed} n'est pas supérieur à 50% de la résistance de calcul à l'effort tranchant V_{c,Rd}.

$$\boldsymbol{V_{Ed}} \leq \frac{\boldsymbol{V_{c,Rd}}}{2}$$

 $0.40 \text{ kN} \leq 15.74 \text{ kN}$

Les efforts sollicitants de calcul défavorables se produisent pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

V_{er}: Effort tranchant sollicitant de calcul le plus défavorable.

V_{Ed} :

kΝ 0.40

V_{c.8d}: Effort tranchant résistant de calcul.

V_{c,Rd} :

31.48

kΝ

Résistance à la flexion et à l'effort normal combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.9)

Doit être respecté:

Doit être respecté:			
$\eta = \left[\frac{M_{\gamma, Ed}}{M_{N, Rd, \gamma}}\right]^{\!$	η:	0.003	✓
$\eta = \frac{N_{\text{t,Ed}}}{A \cdot f_{\text{yd}}} + k_{\text{yy}} \cdot \frac{M_{\text{y,Ed}}}{\chi_{\text{LT}} \cdot W_{\text{pl,y}} \cdot f_{\text{yd}}} + k_{\text{yz}} \cdot \frac{M_{\text{z,Ed}}}{W_{\text{pl,z}} \cdot f_{\text{yd}}} \leq 1$	η:	0.133	✓
$\eta = \frac{N_{t, \text{Ed}}}{A \cdot f_{\text{yd}}} + k_{zy} \cdot \frac{M_{\text{y,Ed}}}{\chi_{\text{LT}} \cdot W_{\text{pl,y}} \cdot f_{\text{yd}}} + k_{zz} \cdot \frac{M_{z, \text{Ed}}}{W_{\text{pl,z}} \cdot f_{\text{yd}}} \leq 1$	η:	0.133	√
Les efforts sollicitants de calcul défavorables se produisent au noeud N8, pour la combinaison d'actions $1.35 \cdot PP + 1.35 \cdot G1 + 1.5 \cdot Q1 + 0.9 \cdot V2$.			
Où:			T
$\mathbf{N}_{t,ed}$: Effort normal de traction sollicitant de calcul.		5.96	kN
$\mathbf{M}_{\mathbf{y}, Ed}$, $\mathbf{M}_{z, Ed}$: Moments fléchissants sollicitants de calcul défavorables, selon	M _{y,Ed}		kN∙m
les axes Y et Z, respectivement.	M _{z,Ed}	0.09	kN∙m
Classe: Classe de la section, selon la capacité de déformation et de déroulement de la résistance plastique de ses éléments plans, pour l'effort normal et la flexion simple.	Classe :	1	
$\mathbf{M}_{N,Rd,yf}$ $\mathbf{M}_{N,Rd,z}$: Moments fléchissants résistants plastiques réduits de	M _{N,Rd,y}	1.56	kN∙m
calcul, autour des axes Y et Z, respectivement.	M _{N,Rd,z}	1.56	kN∙m
$\mathbf{M}_{\mathbf{N},\mathbf{Rd},\mathbf{y}} = \mathbf{M}_{pl,Rd,y} \cdot \left(1 - D^{1,7}\right) \leq \mathbf{M}_{pl,Rd,y}$			
$\mathbf{M}_{N,Rd,z} = \mathbf{M}_{pl,Rd,z} \cdot \left(1 - \mathbf{n}^{1,7}\right) \leq \mathbf{M}_{pl,Rd,z}$			
	α:	2.000	
$\alpha = 2$; $\beta = 2$	β:	2.000	
Avec:			
$\mathbf{n} = N_{\text{t.Ed}}/N_{\text{ol.Rd}}$	n :	0.070	
7-1 P	N _{pl,Rd} :	85.64	kN
$\mathbf{N}_{pl,Rd}$: Résistance à la traction. $\mathbf{M}_{pl,Rd,y}$, $\mathbf{M}_{pl,Rd,z}$: Résistance à la flexion de la section brute en	M _{pl,Rd,y}	1.58	kN∙m
conditions plastiques, par rapport aux axes Y et Z, respectivement.	M _{pl,Rd,z}	1.58	kN⋅m
Résistance au flambement: (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.3.3)	p ₁ , ru ₁ z	1.30	
A: Aire de la section brute.	A :	3.64	cm ²
$\mathbf{W}_{pl,y}, \mathbf{W}_{pl,z}$: Modules résistants plastiques correspondant à la fibre de plus	W _{pl,y}	6.73	cm ³
grande tension, autour des axes Y et Z, respectivement.	W _{pl,z} :	6.73	cm ³
f_{vd}: Résistance de calcul de l'acier.	f _{yd} :	235.00	MPa
$\mathbf{f_{vd}} = \mathbf{f_v}/\gamma_{M1}$			
Avec: $\mathbf{f_v}$: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:			
2007-05, Tableau 3.1)	f _v	235.00	MPa
γ _{м1} : Coefficient partiel de sécurité du matériau.	γм1 :	1.00	
\mathbf{K}_{yy} , \mathbf{K}_{yz} , \mathbf{K}_{zy} , \mathbf{K}_{zz} : Coefficients d'interaction.	K _{yy} :	1.00	
	K _{yz} :	1.00	
	K _{zy}	1.00	
	K _{zz} :	1.00	
		4.00	

χιτ : 1.00

 χ_{LT} : Coefficient de réduction par déversement,

Résistance à la flexion, à l'effort normal et à l'effort tranchant combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.10)

Il n'est pas nécessaire de réduire les résistances de calcul à la flexion et à l'effort normal, car l'effet de voilement par effort tranchant peut être ignoré et, de plus, l'effort tranchant sollicitant de calcul le plus défavorable V_{Ed} est inférieur ou égal à 50% de l'effort tranchant résistant de calcul $V_{\text{c,Rd}}$.

Les efforts sollicitants de calcul défavorables se produisent pour la combinaison d'actions $1.35 \cdot PP + 1.35 \cdot G1 + 1.5 \cdot Q1 + 0.9 \cdot V2$.

$$V_{Ed,y} \le \frac{V_{c,Rd,y}}{2}$$
 0.40 kN \le 15.60 kN \checkmark

Où:

 ${f V}_{{\sf Ed},{\sf y}}$: Effort tranchant sollicitant de calcul le plus défavorable. ${f V}_{{\sf Ed},{\sf y}}$: 0.40 kN ${f V}_{{\sf c},{\sf Rd},{\sf y}}$: Effort tranchant résistant de calcul. ${f V}_{{\sf c},{\sf Rd},{\sf y}}$: 31.21 kN

Résistance à la torsion (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7)

Doit être respecté:

$$\eta = \frac{M_{T,Ed}}{M_{T,Rd}} \leq 1 \qquad \qquad \eta \ : \quad \textbf{0.009} \quad \checkmark \label{eq:tau_T}$$

L'effort sollicitant de calcul défavorable se produit pour la combinaison d'actions $PP+1.35 \cdot G1+1.5 \cdot Q1$.

 $\mathbf{M}_{\mathsf{T,Ed}}$: Moment torseur sollicitant de calcul défavorable. $\mathbf{M}_{\mathsf{T,Ed}}: 0.01$ kN·m Le moment de torsion résistant de calcul $\mathbf{M}_{\mathsf{T,Ed}}$ est donné par:

$$\mathbf{M}_{\mathsf{T},\mathsf{Rd}} = \frac{1}{\sqrt{3}} \cdot \mathsf{W}_{\mathsf{T}} \cdot \mathsf{f}_{\mathsf{yd}} \qquad \qquad \mathbf{M}_{\mathsf{T},\mathsf{Rd}} : \quad 1.39 \quad \mathsf{kN} \cdot \mathsf{m}$$

Où:

 \mathbf{W}_{T} : Module de résistance à la torsion. \mathbf{W}_{T} : 10.23 cm³ \mathbf{f}_{yd} : Résistance de calcul de l'acier. \mathbf{f}_{yd} : 235.00 MPa

$$\mathbf{f}_{yd} = \mathbf{f}_{y} / \gamma_{M0}$$

Avec:

 f_y : Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1) f_y : 235.00 MPa γ_{M0} : Coefficient partiel de sécurité du matériau. γ_{M0} : 1.00

Résistance à l'effort tranchant Z et au moment de torsion combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7)

Doit être respecté:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{pl,T,Rd}}} \leq 1 \qquad \qquad \eta \; : \quad \textbf{0.003} \; \checkmark \label{eq:tau_pl}$$

Les efforts sollicitants de calcul défavorables se produisent au noeud N8, pour la combinaison d'actions $1.35 \cdot PP + 1.35 \cdot G1 + 1.5 \cdot Q1$.

V _{fd} : Effort tranchant sollicitant de calcul le plus défavorable.	V _{Ed} :	0.08	kN
M _{T,Ed} : Moment torseur sollicitant de calcul défavorable.	$M_{T,Ed}$:	0.01	kN∙m
L'effort tranchant résistant de calcul réduit $V_{pl,T,Rd}$ est donné par:			

$$\mathbf{V}_{\text{pl,T,Rd}} = \left[1 - \frac{\tau_{\text{T,Ed}}}{f_{\text{yd}} / \sqrt{3}}\right] \cdot V_{\text{pl,Rd}} \qquad \qquad \mathbf{V}_{\text{pl,T,Rd}} : 31.21 \text{ kN}$$

Où:

$$\mathbf{V}_{\mathsf{pl},\mathsf{Rd}}$$
: Effort tranchant résistant de calcul. $\mathbf{V}_{\mathsf{pl},\mathsf{Rd}}$: 31.48 kN $\tau_{\mathsf{T,Ed}}$: Contraintes tangentielles par torsion. $\tau_{\mathsf{T,Ed}}$: 1.16 MPa

$$\tau_{\text{T,Ed}} = \frac{M_{\text{T,Ed}}}{W_{t}}$$

Avec:

$$\mathbf{W}_{\tau}$$
: Module de résistance à la torsion. \mathbf{W}_{τ} : 10.23 cm³ \mathbf{f}_{yd} : Résistance de calcul de l'acier. \mathbf{f}_{yd} = $\mathbf{f}_{y}/\gamma_{M0}$

 $\mathbf{v_{yd}} = \mathbf{v_y} / \gamma_1$

Résistance à l'effort tranchant Y et au moment de torsion combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7)

Doit être respecté:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{pl},\text{T,Rd}}} \le 1 \qquad \qquad \eta \; : \quad \textbf{0.003} \; \checkmark \label{eq:tau_plus_plus_to_tau_plus$$

Les efforts sollicitants de calcul défavorables se produisent au noeud N8, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1.

$\mathbf{V}_{\epsilon d}$: Effort tranchant sollicitant de calcul le plus défavorable.	V _{Ed} :	0.08	kN
$\mathbf{M}_{\scriptscriptstyleT,Ed}$: Moment torseur sollicitant de calcul défavorable.	M _{T,Ed} :	0.01	kN∙m

L'effort tranchant résistant de calcul réduit $\mathbf{V}_{pl,T,Rd}$ est donné par:

$$\mathbf{V}_{\mathsf{pl},\mathsf{T},\mathsf{Rd}} = \left[1 - \frac{\tau_{\mathsf{T},\mathsf{Ed}}}{\mathsf{f}_{\mathsf{yd}}/\sqrt{3}}\right] \cdot \mathsf{V}_{\mathsf{pl},\mathsf{Rd}} \qquad \qquad \mathbf{V}_{\mathsf{pl},\mathsf{T},\mathsf{Rd}} \quad : \quad 31.21 \quad \mathsf{kN}$$

Où:

$${f V}_{pl,Rd}$$
: Effort tranchant résistant de calcul. ${f V}_{pl,Rd}$: 31.48 kN ${f \tau}_{T,Ed}$: Contraintes tangentielles par torsion. ${f \tau}_{T,Ed}$: 1.16 MPa

$$\tau_{\text{T,Ed}} \, = \frac{M_{\text{T,Ed}}}{W_t}$$

Avec:

$$\mathbf{W}_{\tau}$$
: Module de résistance à la torsion. \mathbf{W}_{τ} : 10.23 cm³ \mathbf{f}_{yd} : Résistance de calcul de l'acier. \mathbf{f}_{yd} : 235.00 MPa

$$\mathbf{f_{yd}} = \mathbf{f_y} / \gamma_{M0}$$

Avec:

$$f_v$$
: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1) f_v : 235.00 MPa γ_{M0} : Coefficient partiel de sécurité du matériau. γ_{M0} : 1.00

NOTE DE CALCUL TUBE ROND 80.3mm

Profilé: TUBE ROND 80.3mm Matériau: Acier (S235 (EN 1993-1-1))

1333-1-	-11	I STATE OF THE PARTY OF THE PAR				
Noe	uds		Ca	ractéristiqu	es mécanio	ques
Initial	Final	Longueur (m)	Aire (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N26	N64	2.478	7.26	53.87	53.87	107.73

Notes:

(1) Inertie par rapport à l'axe indiqué (2) Moment d'inertie à la torsion uniforme

	Flamb	ement	Dévers	ement
	Plan XY	Plan XZ	Aile sup.	Aile inf.
β	1.00	1.00	0.00	0.00
L _K	2.478	2.478	0.000	0.000
C _m	1.000	1.000	1.000	1.000
		-	1.0	00

Notation:

β: Coefficient de flambement

 L_{κ} : Longueur de flambement (m)

C_m: Coefficient de moments

 C_i : Facteur de modification pour le moment critique

				VE	RIFICATIONS	-			I-1/NA: 2007			1414	M.V.	État
Barre	N,	N.	M _v	M _z	V ₂	V,	M.V.	M ₂ V ₄	NM,Me	NM,M ₂ V ₄ V ₂	M _e	M _i V _z		
N26/N64	N _{Ed} = 0.00 N _x V _x ⁽¹⁾	η = 0-1	x: 2.478 m n = 19.2	x: 2.478 m η = 2.8	x: 2.478 m n = 3.3	x: 0 m n = 0.1	η < 0.1	η < 0,1	x: 2.478 m η = 21.0	η < 0.1	η = 10:3	x: 2,478 m η = 3.7	x: 2.478 m η = 3.7	7 = 21.0
M; Rési V: Rési V. Rési M, V. Rési M, V. Rési M, V. Rési M, V. Rési M. V. Rési M. V. Rési	Eustance au mon Résistance à la fi V _I : Résistance à stance à la forsic laistance à l'effoi	on suivant l'a ement Z ment l'échiss ment fléchiss lexion et à l'a flexion, à on et tranchant : t tranchant	xe Z ant Y et à l'effort ant Z et à l'effort effort normal corr l'effort normal et Z et au moment d I' et au moment d	tranchant Y com ibinés à l'effort trancha de torsion combin	ones ont combinés és									

Résistance à la traction (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.3)

La vérification n'est pas réalisée car il n'y a pas d'effort normal de traction.

Résistance à la compression (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.4)

Doit être respecté:

$$\eta = \frac{N_{c,\text{Ed}}}{N_{c,\text{Rd}}} \leq 1 \hspace{1cm} \eta \; : \quad \underline{\textit{o.001}} \quad \checkmark$$

L'effort sollicitant de calcul défavorable se produit pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

 $\mathbf{N}_{\mathsf{c},\mathsf{Ed}}$: Effort normal de compression sollicitant défavorable. 0.20 kN

La résistance de calcul à la compression N_{c,Rd} est donnée par:

$$N_{c,Rd} = A \cdot f_{yd}$$
 $N_{c,Rd} : 170.54 \text{ kN}$

Où:

Classe: Classe de la section, selon la capacité de déformation et de Classe : 1 développement de la résistance plastique des éléments plans comprimés d'une section.

A: Aire de la section brute pour les sections de classe 1, 2 et 3. cm^2 7.26 **f**_{yd}: 235.00 MPa f_{vd}: Résistance de calcul de l'acier.

$$\mathbf{f_{yd}} = \mathbf{f_y}/\gamma_{MO}$$

Avec:

 $\mathbf{f_v}$: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: f_v: 235.00 MPa 2007-05, Tableau 3.1)

_{умо} : Coefficient partiel de sécurité du matériau.	γмо : 1.00
Résistance au flambement: (Eurocode 3 NF EN 1993-1-1/NA: 2007-05,	1.00
Article 6.3.1)	
Si l'élancement $\overline{\lambda} \leq 0.2$ ou la relation $N_{c,ed}$ / $N_{cr} \leq 0.04$, il est possible d'ignorer l'effet du flambement et de vérifier uniquement la résistance de la section transversale.	-
$\overline{\lambda}$: Élancement réduit.	$\bar{\lambda}$: 0.97
$\overline{\lambda} = \sqrt{\frac{\overline{A} \cdot f_{\gamma}}{N_{cr}}}$	
$\mathbf{N}_{c,Ed}/\mathbf{N}_{cr}$: Relation des efforts normaux.	$N_{c,Ed}/N_{cr}$: 0.001
Où:	A : 7.26 cm ²
A: Aire de la section brute pour les sections de classe 1, 2 et 3. f _y : Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:	7120
2007-05, Tableau 3.1)	f_v : 235.00 MPa N _{cr} : 181.74 kN
N _{er} : Effort normal critique de flambement élastique.	101.74 Kit
L'effort normal critique de flambement élastique N _e , est la plus petite des valeurs obtenues dans a), b) et c): a) Effort normal critique élastique de flambement par flexion par rapport à l'axe Y.	N _{cr,y} : 181.74 kN
${f N_{cr,y}}=rac{\pi^2\cdot {f E}\cdot {f I_y}}{{f L_{ky}^2}}$ b) Effort normal critique élastique de flambement par	N
flexion par rapport à l'axe Z. $\mathbf{N_{cr,z}} = \frac{\pi^2 \cdot \mathbf{E} \cdot \mathbf{I_z}}{\mathbf{L_{cr,z}^2}}$	N _{cr,z} : 181.74 kN
c) Effort normal critique élastique de flambement par torsion. $\mathbf{N_{cr,T}} = \frac{1}{l_0^2} \cdot \left[\mathbf{G} \cdot \mathbf{I_t} + \frac{\pi^2 \cdot \mathbf{E} \cdot \mathbf{I_w}}{L_{kt}^2} \right]$	N _{cr,T} : ∞
Où: $\mathbf{I}_{\mathbf{v}}$: Moment d'inertie de la section brute, par	
rapport à l'axe Y.	I_v : 53.87 cm4
${f I}_z$: Moment d'inertie de la section brute, par rapport à l'axe Z.	I _z : 53.87 cm4
I _t : Moment d'inertie à la torsion uniforme.	I _t : 107.73 cm4
$\mathbf{I}_{\mathbf{w}}$: Constante de courbure de la section.	I _w : 0.00 cm6
E: Module d'élasticité longitudinale.	E : 210000 MPa
G: Module d'élasticité transversale.	G : 81000 MPa
\mathbf{L}_{ky} : Longueur effective de flambement par flexion, par rapport à l'axe Y.	L _{ky} : 2.478 m
$\mathbf{L}_{\mathbf{k}}$: Longueur effective de flambement par flexion, par rapport à l'axe Z.	L _{kz} : 2.478 m
$\mathbf{L}_{\mathbf{k}}$: Longueur effective de flambement par torsion.	L _{kt} : <i>0.000</i> m
i_{o} : Rayon de courbure polaire de la section brute, par rapport au centre de torsion.	i _o : 3.85 cm
$i_0 = (i_y^2 + i_z^2 + y_0^2 + Z_0^2)^{0.5}$	
Avec:	
i _y , i _z : Rayon de giration polaire de la	i _v : 2.72 cm
section brute, par rapport aux axes principaux d'inertie Y et Z.	i _z : 2.72 cm

f

ľ

L

y₀ , z₀: Coordonnées du centre de torsion dans la direction des axes principaux Y et Z, respectivement, relatives au centre de gravité de la section.

0.00 mm

0.00 mm

Résistance à la flexion suivant l'axe Y (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.5)

Doit être respecté:

$$\eta = \frac{M_{\text{Ed}}}{M_{c,\text{Rd}}} \leq 1$$

η: **0.192** √

kN⋅m

Pour la flexion positive:

 $\mathbf{M}_{\mathsf{Ed}}^+$: Moment fléchissant sollicitant de calcul le plus défavorable. 0.00

Pour la flexion négative:

L'effort sollicitant de calcul défavorable se produit au noeud N64, pour la combinaison d'actions 1.35-PP+1.35-G1+1.5-Q1+0.9-V2.

M_{ed}: Moment fléchissant sollicitant de calcul le plus défavorable. kN·m 0.80 Le moment fléchissant résistant de calcul Mc,Rd est donné par:

kN·m 4.18 $\mathbf{M_{c,Rd}} = \mathbf{W_{pl,y}} \cdot \mathbf{f_{yd}}$

Où:

Classe: Classe de la section, selon la capacité de déformation et de Classe : développement de la résistance plastique des éléments plans d'une section à flexion simple.

 $\mathbf{W}_{\mathsf{pl},\mathsf{y}}$: Module résistant plastique correspondant à la fibre de plus

 $W_{pl,y}: 17.80 \text{ cm}^3$ grande tension, pour les sections de classe 1 et 2.

f_{vd}: 235.00 MPa f_{vd}: Résistance de calcul de l'acier.

 $\mathbf{f_{vd}} = \mathbf{f_v} / \gamma_{MO}$

Avec:

f_v: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:

f_v: 235.00 MPa 2007-05, Tableau 3.1) γ_{мo}: Coefficient partiel de sécurité du matériau. үмо : 1.00

Résistance à la flexion suivant l'axe Z (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.5)

Doit être respecté:

$$\eta = \frac{M_{\text{Ed}}}{M_{\text{c,Rd}}} \leq 1$$

η: 0.028 √

Pour la flexion positive:

 $\mathbf{M}_{c_r R d} = W_{pl,z} \cdot f_{yd}$

L'effort sollicitant de calcul défavorable se produit au noeud N64, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1.

M_{Ed}⁺: Moment fléchissant sollicitant de calcul le plus défavorable. Pour la flexion négative:

0.00 kN·m

M_{fd}: Moment fléchissant sollicitant de calcul le plus défavorable. Le moment fléchissant résistant de calcul M_{c.Rd} est donné par:

0.12

4.18

kN·m

kN∙m

Où:

Classe: Classe de la section, selon la capacité de déformation et de développement de la résistance plastique des éléments plans d'une section à flexion simple.

Classe :

W_{pl,z}: Module résistant plastique correspondant à la fibre de plus grande tension, pour les sections de classe 1 et 2.

17.80 cm³

f_{vd}: Résistance de calcul de l'acier.

f_{vd}: 235.00 MPa

$$\mathbf{f_{yd}} = \mathbf{f_y}/\gamma_{M0}$$

Avec:

f.: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)

f_v : 235.00 MPa

ymo: Coefficient partiel de sécurité du matériau.

1.00

Résistance au cisaillement Z (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.6)

Doit être respecté:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{C,Rd}}} \le 1$$

າ: **0.033 √**

L'effort sollicitant de calcul défavorable se produit au noeud N64, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

V_{Ed}: Effort tranchant sollicitant de calcul le plus défavorable.

2.06

Résistance au cisaillement de la section:

L'effort tranchant résistant de calcul V_{c.Rd} est donné par:

$$\boldsymbol{V_{c,Rd}} = \boldsymbol{A}_{v} \cdot \frac{f_{yd}}{\sqrt{3}}$$

Où:

62.68 kN

A.: Aire transversale au cisaillement.

4.62 cm²

$$\mathbf{A}_{\mathbf{v}} = 2 \cdot \mathbf{A}/\pi$$

Avec:

A: Aire de la section brute.

cm² 7.26

f_{vd}: Résistance de calcul de l'acier.

f_{vd} : 235.00 MPa

 $\mathbf{f}_{vd} = \mathbf{f}_{v} / \gamma_{MO}$

Avec:

f.: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)

f_v : 235.00 MPa

YMO: Coefficient partiel de sécurité du matériau.

γмо ∶ 1.00

Résistance au cisaillement Y (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.6)

Doit être respecté:

$$\eta \, = \frac{V_{Ed}}{V_{c,Rd}} \leq 1$$

η: 0.001 V

L'effort sollicitant de calcul défavorable se produit au noeud N26, pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

V_{ed}: Effort tranchant sollicitant de calcul le plus défavorable.

V_{Ed} kΝ 0.08

Résistance au cisaillement de la section:

L'effort tranchant résistant de calcul V_{c,Rd} est donné par:

$$\boldsymbol{V_{c,Rd}} = \boldsymbol{A_{v}} = \frac{f_{yd}}{\sqrt{3}}$$

62.68

A_v: Aire transversale au cisaillement.

4.62 cm²

 $\mathbf{A}_{\mathbf{v}} = 2 \cdot \mathbf{A}/\pi$

Avec:

A: Aire de la section brute.

cm² 7.26

f_{vd}: Résistance de calcul de l'acier.

f_{vd} : 235.00 MPa

 $\mathbf{f_{vd}} = \mathbf{f_v} / \gamma_{MO}$

Avec:

f_v: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:

2007-05, Tableau 3.1)

f_v: 235.00 MPa

γ_{мo}: Coefficient partiel de sécurité du matériau.

γмо : 1.00

Résistance au moment fléchissant Y et à l'effort tranchant Z combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.8)

Il n'est pas nécessaire de réduire la résistance de calcul à la flexion étant donné que le renfort à l'effort tranchant sollicitant de calcul défavorable VE n'est pas supérieur à 50% de la résistance de calcul à l'effort tranchant V_{c,Rd}.

$$V_{Ed} \leq \frac{V_{c,Rd}}{2}$$

2.04 kN ≤ 31.34 kN ✓

Les efforts sollicitants de calcul défavorables se produisent pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

V_{Ed}: Effort tranchant sollicitant de calcul le plus défavorable.

V_{Ed}

kΝ

V_{c.Rd}: Effort tranchant résistant de calcul.

 $V_{c,Rd}$:

kΝ 62.68

2.04

Résistance au moment fléchissant Z et à l'effort tranchant Y combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.8)

Il n'est pas nécessaire de réduire la résistance de calcul à la flexion étant donné que le renfort à l'effort tranchant sollicitant de calcul défavorable VE n'est pas supérieur à 50% de la résistance de calcul à l'effort tranchant V_{c,Rd}.

$$V_{Ed} \le \frac{V_{c,Rd}}{2}$$

 $0.08 \text{ kN} \leq 31.34 \text{ kN}$

Les efforts sollicitants de calcul défavorables se produisent pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

V_{ed}: Effort tranchant sollicitant de calcul le plus défavorable.

V_{Ed} :

0.08

kΝ kΝ

V_{c,Rd}: Effort tranchant résistant de calcul.

 $V_{c,Rd}$:

62.68

Résistance à la flexion et à l'effort normal combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.9)

Doit être respecté:

$$\eta = \frac{N_{c,Ed}}{\chi_v \cdot A \cdot f_{vd}} + k_{yy} \cdot \frac{M_{y,Ed}}{\chi_{LT} \cdot W_{el,y} \cdot f_{vd}} + k_{yz} \cdot \frac{M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1$$

$$\eta : \quad \textbf{0.210} \quad \checkmark$$

$$\eta = \frac{N_{c,Ed}}{\chi_z \cdot A \cdot f_{yd}} + k_{zy} \cdot \frac{M_{y,Ed}}{\chi_{LT} \cdot W_{pl,y} \cdot f_{yd}} + k_{zz} \cdot \frac{M_{z,Ed}}{W_{pl,z} \cdot f_{yd}} \leq 1$$

$$\eta : \quad \textbf{0.144} \quad \checkmark$$

Les efforts sollicitants de calcul défavorables se produisent au noeud N64, pour la combinaison d'actions $1.35 \cdot PP + 1.35 \cdot G1 + 1.5 \cdot Q1 + 0.9 \cdot V2$.

Où:

$N_{c,Ed}$: Effort normal sollicitant de compression de calcul.	N _{c,Ed} :	0.20	kN
M _{v,Ed} , M _{z,Ed} : Moments fléchissants sollicitants de calcul défavorables, selon les	M _{y,Ed} :	0.80	kN∙m
axes Y et Z, respectivement.	M _{z,Ed} + :	0.12	kN∙m
Classe: Classe de la section, selon la capacité de déformation et de	Classe :	1	

kN·m

kN·m

f_v: 235.00 MPa

1.00

YM1 :

Classe: Classe de la section, selon la capacité de déformation et de déroulement de la résistance plastique de ses éléments plans, pour l'effort normal et la flexion simple.

 $\mathbf{M}_{\mathsf{N},\mathsf{Rd},\mathsf{y}}$, $\mathbf{M}_{\mathsf{N},\mathsf{Rd},\mathsf{z}}$: Moments fléchissants résistants plastiques réduits de calcul, autour des axes Y et Z, respectivement. $\mathbf{M}_{\mathsf{N},\mathsf{Rd},\mathsf{z}}$: 4.18

$$M_{N,Rd,y} = M_{pi,Rd,y} = (1 - n^{1,7}) \le M_{pi,Rd,y}$$

$$\boldsymbol{M_{N,Rd,z}} = \boldsymbol{M_{pl,Rd,z}} \cdot \left(1 - n^{1,7}\right) \leq \boldsymbol{M_{pl,Rd,z}}$$

$$\alpha = 2$$
 ; $\beta = 2$
$$\frac{\alpha : 2.000}{\beta : 2.000}$$

Avec:

Résistance au flambement: (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.3.3)

A: Aire de la section brute.

A:
$$7.26$$
 cm²

W_{pl,y}, W_{pl,z}: Modules résistants plastiques correspondant à la fibre de plus grande tension, autour des axes Y et Z, respectivement.

W_{pl,y}: 17.80 cm³

W_{pl,z}: 17.80 cm³

f_{vd}: Résistance de calcul de l'acier.

f_{yd}: 235.00 MPa

$$\mathbf{f_{vd}} = f_v / \gamma_{M1}$$

Avec:

$$\mathbf{f_y}$$
: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)

$$\gamma_{M1}$$
: Coefficient partiel de sécurité du matériau.

 \mathbf{K}_{yy} , \mathbf{K}_{yz} , \mathbf{K}_{zy} , \mathbf{K}_{zz} : Coefficients d'interaction.

$$\mathbf{k}_{yy} = C_{m,v} \cdot C_{m,LT} \cdot \frac{\mu_v}{1 - \frac{N_{ed}}{N_{cr,y}}} \cdot \frac{1}{C_{yy}}$$

$$\mathbf{K}_{yy} : \underline{1.00}$$

$$\mathbf{k}_{yz} = C_{m,z} \cdot \frac{\mu_{y}}{1 - \frac{N_{Ed}}{N_{cr,z}}} \cdot \frac{1}{C_{yz}} \cdot 0.6 \cdot \sqrt{\frac{W_{z}}{W_{y}}}$$

$$\mathbf{K}_{yz} : 0.60$$

$$\mathbf{k}_{zy} = C_{m,y} \cdot C_{m,LT} \cdot \frac{\mu_z}{1 - \frac{N_{Ed}}{N_{cry}}} \cdot \frac{1}{C_{zy}} \cdot 0.6 \cdot \sqrt{\frac{w_y}{w_z}}$$

$$\mathbf{K}_{zy} : 0.60$$

$$\boldsymbol{k_{zz}} = C_{m,z} \cdot \frac{\mu_z}{1 - \frac{N_{Ed}}{N_{cz}}} \cdot \frac{1}{C_{zz}}$$

K_{zz}: 1.00

Termes auxiliaires:

$$\mu_{\text{v}} = \frac{1 - \frac{N_{\text{Ed}}}{N_{\text{cr,y}}}}{1 - \chi_{\text{v}} \cdot \frac{N_{\text{Ed}}}{N_{\text{cr,y}}}} \qquad \qquad \mu_{\text{v}} : \qquad 1.00$$

$$\mu_z = \frac{1 - \frac{N_{Ed}}{N_{cr,z}}}{1 - \chi_z \cdot \frac{N_{Ed}}{N_{cr,z}}} \qquad \qquad \mu_z \ : \qquad 1.00$$

$$\boldsymbol{C}_{\boldsymbol{y}\boldsymbol{y}} = 1 + \left(\boldsymbol{w}_{\boldsymbol{y}} - 1\right) \cdot \left[\left(2 - \frac{1.6}{\boldsymbol{w}_{\boldsymbol{y}}} \cdot \boldsymbol{C}_{m\boldsymbol{y}}^2 \cdot \overline{\boldsymbol{\lambda}}_{max} - \frac{1.6}{\boldsymbol{w}_{\boldsymbol{y}}} \cdot \boldsymbol{C}_{m\boldsymbol{y}}^2 \cdot \overline{\boldsymbol{\lambda}}_{max}^2\right) \cdot \boldsymbol{n}_{pl} - \boldsymbol{b}_{LT} \right] \geq \frac{\boldsymbol{W}_{el,\boldsymbol{y}}}{\boldsymbol{W}_{pl,\boldsymbol{y}}} \qquad \qquad \boldsymbol{C}_{\boldsymbol{w}} : \qquad \boldsymbol{1.00} \cdot \boldsymbol{D}_{pl} \cdot \boldsymbol{D}_{pl}$$

$$\textbf{C}_{\textbf{zy}} = \textbf{1} + \left(\textbf{W}_{\textbf{y}} - \textbf{1}\right) \cdot \left[\left(2 - 14 \cdot \frac{\textbf{C}_{my}^2 \cdot \overline{\lambda}_{max}^2}{\textbf{W}_{\textbf{y}}^5}\right) \cdot \textbf{n}_{pl} - \textbf{d}_{LT} \right] \ge 0.6 \cdot \sqrt{\frac{\textbf{W}_{\textbf{y}}}{\textbf{W}_{\textbf{z}}}} \cdot \frac{\textbf{W}_{\textbf{el},\textbf{y}}}{\textbf{W}_{\textbf{pl},\textbf{y}}} \quad \textbf{C}_{\textbf{zy}} : \underline{\textbf{1.00}} \quad .$$

$$\mathbf{C}_{zz} = 1 + \left(w_z - 1 \right) \cdot \left[\left(2 - \frac{1.6}{w_z} \cdot C_{mz}^2 \cdot \overline{\lambda}_{max} - \frac{1.6}{w_z} \cdot C_{mz}^2 \cdot \overline{\lambda}_{max}^2 - e_{LT} \right) \cdot n_{pi} \right] \ge \frac{W_{el,z}}{W_{pl,z}}$$

$$\mathbf{C}_{zz} : 1.00$$

$$\mathbf{a_{LT}} = 1 - \frac{I_{t}}{I_{v}} \ge 0$$
 $\mathbf{a_{LT}} : 0.00$

$$\mathbf{b_{LT}} = 0.5 \cdot a_{LT} \cdot \overline{\lambda_0}^2 \cdot \frac{M_{v,Ed}}{\chi_{LT} \cdot M_{pl,Rd,y}} \cdot \frac{M_{z,Ed}}{M_{pl,Rd,z}}$$

$$\mathbf{b_{LT}} : 0.00$$

$$\mathbf{c}_{\text{LT}} = 10 \cdot a_{\text{LT}} \cdot \frac{\overline{\lambda}_{0}^{2}}{5 + \overline{\lambda}_{z}^{4}} \cdot \frac{M_{\text{y,Ed}}}{C_{\text{m,y}} \cdot \chi_{\text{LT}} \cdot M_{\text{pl,Rd,y}}}$$

$$\mathbf{c}_{\text{LT}} : 0.00$$

$$\boldsymbol{d_{LT}} = 2 \cdot \boldsymbol{a_{LT}} \cdot \frac{\overline{\lambda}_0}{0.1 + \overline{\lambda}_z^4} \cdot \frac{\boldsymbol{M_{y,Ed}}}{\boldsymbol{C_{m_{xy}}} \cdot \chi_{LT} \cdot \boldsymbol{M_{pl,Rd,z}}} \cdot \frac{\boldsymbol{M_{z,Ed}}}{\boldsymbol{C_{m_{yz}}} \cdot \boldsymbol{M_{pl,Rd,z}}} \\ \boldsymbol{d_{LT}} \ : \ \ \boldsymbol{0.00}$$

$$\mathbf{e}_{\text{LT}} = 1.7 \cdot a_{\text{LT}} \cdot \frac{\overline{\lambda}_0}{0.1 + \overline{\lambda}_z^4} \cdot \frac{M_{\text{y,Ed}}}{C_{\text{m,y}} \cdot \chi_{\text{LT}} \cdot M_{\text{p(,Rd,y)}}} \\ \mathbf{e}_{\text{LT}} : 0.00$$

$$\mathbf{w_{y}} = \frac{W_{pl,y}}{W_{el,y}} \le 1.5$$
 $\mathbf{w_{y}} : 1.32$

$$\mathbf{W_z} = \frac{W_{\text{pl,z}}}{W_{\text{el,z}}} \le 1.5$$
 $\mathbf{W_z} : 1.32$

$$\boldsymbol{n_{pl}} = \frac{N_{Ed}}{N_{pl,Rd}} \hspace{1cm} \boldsymbol{n_{pl}} \hspace{1cm} : \hspace{1cm} \boldsymbol{0.00}$$

Étant donné que:

$$\overline{\lambda}_{0} \leq 0.2 \cdot \sqrt{C_{1}} \cdot \sqrt[4]{\left(1 - \frac{N_{Ed}}{N_{cr,v}}\right) \cdot \left(1 - \frac{N_{Ed}}{N_{cr,z}}\right)}$$
 0.00 \leq 0.20

$$C_{m,y} = C_{m,y,0}$$
 1.00

$$C_{m,z} = C_{m,z,0}$$
 1.00

$$\mathbf{C}_{\mathsf{m,LT}} = 1.00$$

$$\mathbf{C}_{m,y,0}$$
, $\mathbf{C}_{m,z,0}$: Facteurs de moment fléchissant uniforme équivalent. $\mathbf{C}_{m,y,0}$: 1.00 $\mathbf{C}_{m,z,0}$: 1.00

C₁: Facteur dépendant des conditions d'appui et de la forme du diagramme des moments fléchissants sur la barre.

χ_y , χ_z : Coefficients de réduction par flambement, autour des axes Y et Z,	χν :	1.00	
respectivement.	χ2 :	1.00	
χ _{LT} : Coefficient de réduction par déversement.	χ _{LT}	1.00	
$\overline{\lambda}_{max}$: Élancement maximum entre $\overline{\lambda}_{y}$ et $\overline{\lambda}_{z}$.	λ_{max}	0.97	
$\bar{\lambda}_{v}$, $\bar{\lambda}_{z}$: Élancements réduits par rapport aux axes Y et Z, respectivement.	$\overline{\lambda}_{\mathbf{v}}$:	0.97	
	$\overline{\lambda}_z$	0.97	
$\overline{\lambda}_{tr}$: Élancement réduit.	$\overline{\lambda}_{LT}$:	0.00	
$\overline{\lambda}_0$: Élancement réduit, en relation avec le déversement, pour un moment fléchissant uniforme.	$\overline{\lambda}_{o}$:	0.00	
W _{ela} , W _{ela} : Modules résistants élastiques correspondant à la fibre comprimée,	W _{el,y}	13.47	cm ³
autour des axes Y et Z, respectivement.	W _{el,z}	13.47	cm ³
$N_{c,y}$: Effort normal critique élastique de flambement par flexion par rapport à l'axe Y.	N _{cr,y} :	181.74	kN
$N_{cr,z}$: Effort normal critique élastique de flambement par flexion par rapport à l'axe Z.	N _{cr,z} :	181.74	kN
I _v : Moment d'inertie de la section brute, par rapport à l'axe Y.	I, :	<i>53.87</i>	cm4
\mathbf{I}_{t} : Moment d'inertie à la torsion uniforme.	$\mathbf{I_t}$:	107.73	cm4

Résistance à la flexion, à l'effort normal et à l'effort tranchant combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.10)

Il n'est pas nécessaire de réduire les résistances de calcul à la flexion et à l'effort normal, car l'effet de voilement par effort tranchant peut être ignoré et, de plus, l'effort tranchant sollicitant de calcul le plus défavorable \mathbf{V}_{Ed} est inférieur ou égal à 50% de l'effort tranchant résistant de calcul $\mathbf{V}_{\text{C,Rd}}$.

Les efforts sollicitants de calcul défavorables se produisent pour la combinaison d'actions 1.35·PP+1.35·G1+1.5·Q1+0.9·V2.

$\mathbf{V}_{Ed,z} \leq \frac{V_{c,Rd,z}}{2}$	2.04 kN ≤	28.11 kN	√
Où:			
V _{Ed,z} : Effort tranchant sollicitant de calcul le plus défavorable.	$V_{\text{Ed,z}}$:	2.04	kN
V _{s.Rd.2} : Effort tranchant résistant de calcul.	$V_{c,Rd,z}$:	56.22	kΝ

Résistance à la torsion (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7)

Doit être respecté:

$$\eta = \frac{M_{T,Ed}}{M_{T,Rd}} \leq 1 \hspace{1cm} \eta \ : \hspace{1cm} \textbf{0.103} \hspace{1cm} \checkmark$$

L'effort sollicitant de calcul défavorable se produit pour la combinaison d'actions $1.35 \cdot PP + 1.35 \cdot G1 + 1.5 \cdot Q1 + 0.9 \cdot V2$.

 $\mathbf{M}_{\mathsf{T,Ed}}$: Moment torseur sollicitant de calcul défavorable. $\mathbf{M}_{\mathsf{T,Ed}}$: 0.38 kN·m

Le moment de torsion résistant de calcul $\mathbf{M}_{\scriptscriptstyle T,Rd}$ est donné par:

$$\mathbf{M}_{\mathsf{T},\mathsf{Rd}} = \frac{1}{\sqrt{3}} \cdot \mathsf{W}_{\mathsf{T}} \cdot \mathsf{f}_{\mathsf{yd}} \qquad \qquad \mathbf{M}_{\mathsf{T},\mathsf{Rd}} : \quad 3.65 \quad \mathsf{kN} \cdot \mathsf{m}$$

Où:

 \mathbf{W}_{T} : Module de résistance à la torsion. \mathbf{W}_{T} : 26.93 cm³ \mathbf{f}_{vd} : Résistance de calcul de l'acier. \mathbf{f}_{Vd} : 235.00 MPa

 $\mathbf{f_{yd}} = \mathbf{f_y} / \gamma_{M0}$

Avec:

f_v: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1) f_v: 235.00 MPa γ_{MO} : Coefficient partiel de sécurité du matériau. γ_{MO} : 1.00

Résistance à l'effort tranchant Z et au moment de torsion combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7)

Doit être respecté:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{pl,T,Rd}}} \leq 1$$

η: **0.037 √**

Les efforts sollicitants de calcul défavorables se produisent au noeud N64, pour la combinaison d'actions $1.35 \cdot PP + 1.35 \cdot G1 + 1.5 \cdot Q1 + 0.9 \cdot V2$.

V_{Ed}: Effort tranchant sollicitant de calcul le plus défavorable.

/_{Ed} : 2.06 kN

 $\mathbf{M}_{\mathsf{T},\mathsf{Ed}}$: Moment torseur sollicitant de calcul défavorable.

T,Ed : 0.38 kN·m

L'effort tranchant résistant de calcul réduit $\mathbf{V}_{pl,T,Rd}$ est donné par:

$$\boldsymbol{V_{\text{pl,T,Rd}}} = \left[1 - \frac{\tau_{\text{T,Ed}}}{f_{\text{yd}}/\sqrt{3}}\right] \cdot V_{\text{pl,Rd}}$$

V_{pl,T,Rd} : 56.22 kN

Où:

 $\mathbf{V}_{\mathsf{pl},\mathsf{Rd}}$: Effort tranchant résistant de calcul.

/_{pl,Rd} : 62.68 kN

 $\tau_{\tau,\text{\tiny Ed}} \colon$ Contraintes tangentielles par torsion.

τ_{τ,Ed} : 13.98 MPa

$$\tau_{\text{T,Ed}} = \frac{M_{\text{T,Ed}}}{W_{t}}$$

Avec:

 \mathbf{W}_{T} : Module de résistance à la torsion.

W_⊤ : 26.93 cm³

f_{vd}: Résistance de calcul de l'acier.

f_{yd} : 235.00 MPa

$$\mathbf{f}_{vd} = \mathbf{f}_{v} / \gamma_{M0}$$

Avec:

 $\mathbf{f_y}$: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:

f_y: 235.00 MPa

2007-05, Tableau 3.1) γ_{мα}: Coefficient partiel de sécurité du matériau.

γмо ∶ 1.00

Résistance à l'effort tranchant Y et au moment de torsion combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7)

Doit être respecté:

$$\eta = \frac{V_{\text{Ed}}}{V_{\text{pl,T,Rd}}} \leq 1 \hspace{1cm} \eta \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.037} \hspace{0.2cm} \checkmark$$

Les efforts sollicitants de calcul défavorables se produisent au noeud N64, pour la combinaison d'actions $1.35 \cdot PP + 1.35 \cdot G1 + 1.5 \cdot Q1 + 0.9 \cdot V2$.

 V_{Ed} : Effort tranchant sollicitant de calcul le plus défavorable. V_{Ed} : 2.06 kN $M_{\text{T,Ed}}$: Moment torseur sollicitant de calcul défavorable. $M_{\text{T,Ed}}$: 0.38 kN·m L'effort tranchant résistant de calcul réduit $V_{\text{pl,T,Rd}}$ est donné par:

$$\mathbf{V}_{\text{pl,T,Rd}} = \left[1 - \frac{\tau_{\text{T,Ed}}}{f_{\text{yd}}/\sqrt{3}}\right] \cdot V_{\text{pl,Rd}} \qquad \qquad \mathbf{V}_{\text{pl,T,Rd}} : \quad 56.22 \quad kN$$

Οù

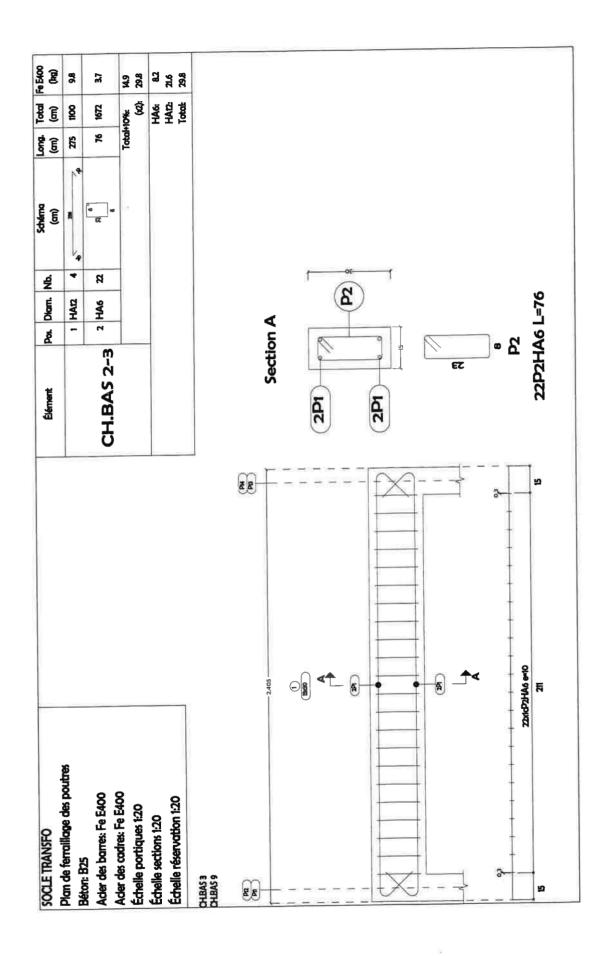
$$\mathbf{V}_{\mathsf{pl},\mathsf{Rd}}$$
: Effort tranchant résistant de calcul. $\mathbf{v}_{\mathsf{pl},\mathsf{Rd}}$: 62.68 kN $\tau_{\mathsf{T,Ed}}$: Contraintes tangentielles par torsion. $\tau_{\mathsf{T,Ed}}$: 13.98 MPa

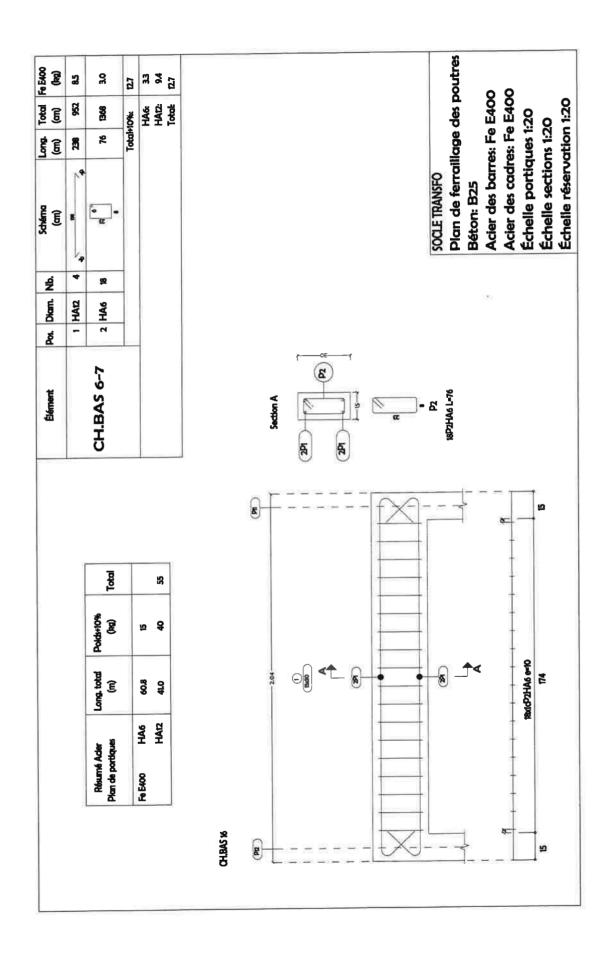
$$\tau_{\text{T,Ed}} = \frac{M_{\text{T,Ed}}}{W_{\text{t}}}$$

Avec:

$$\mathbf{W}_{\tau}$$
: Module de résistance à la torsion. \mathbf{W}_{τ} : 26.93 cm³ \mathbf{f}_{yd} : Résistance de calcul de l'acier. \mathbf{f}_{yd} : 235.00 MPa

$$\mathbf{f}_{yd} = \mathbf{f}_{y} / \gamma_{MO}$$

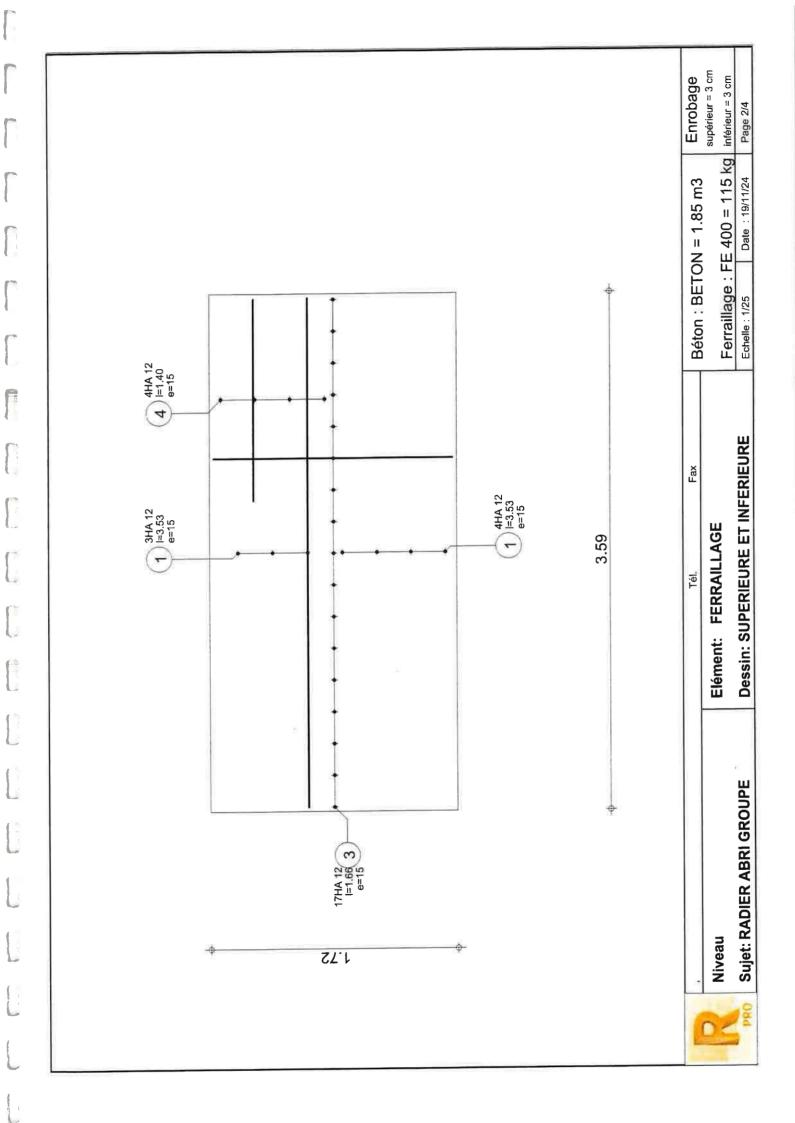

Avec:

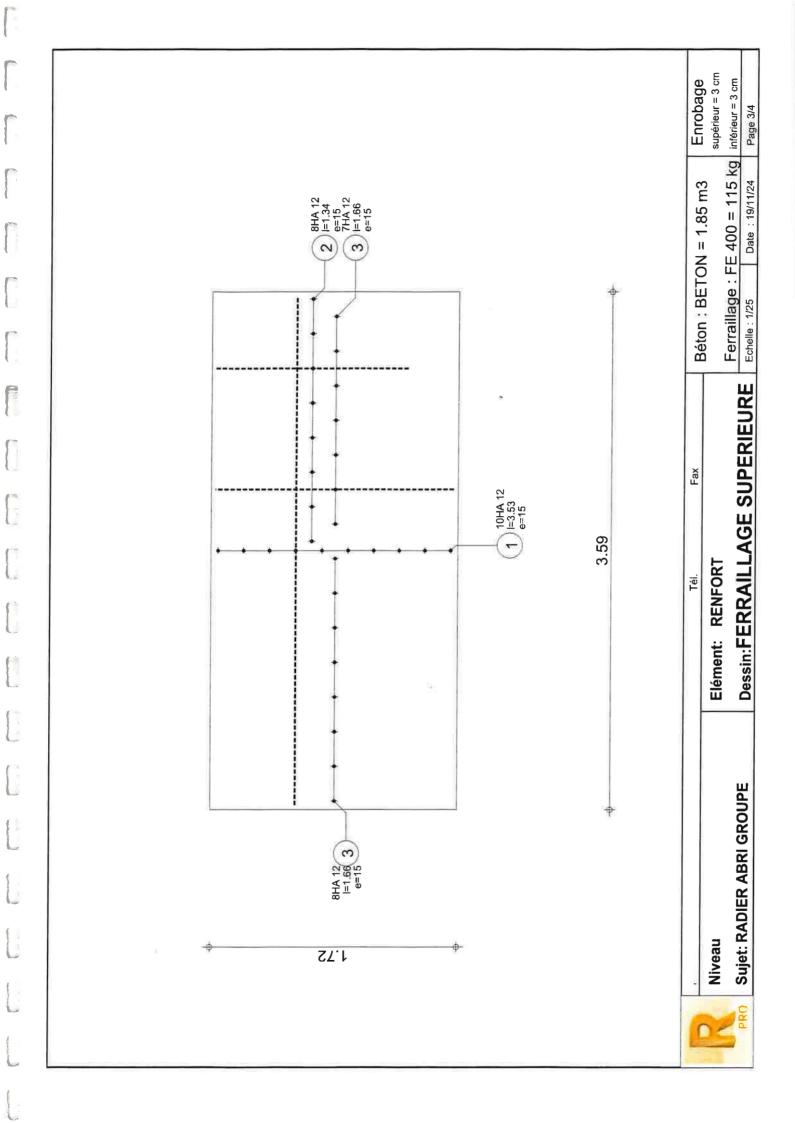

$$f_{\nu}$$
: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)
$$f_{\nu}: 235.00 \quad \text{MPa} \\ \gamma_{\text{Mo}}: \text{Coefficient partiel de sécurité du matériau.} \qquad \gamma_{\text{Mo}}: 1.00$$

CARNET DE FERRAILLAGES

F

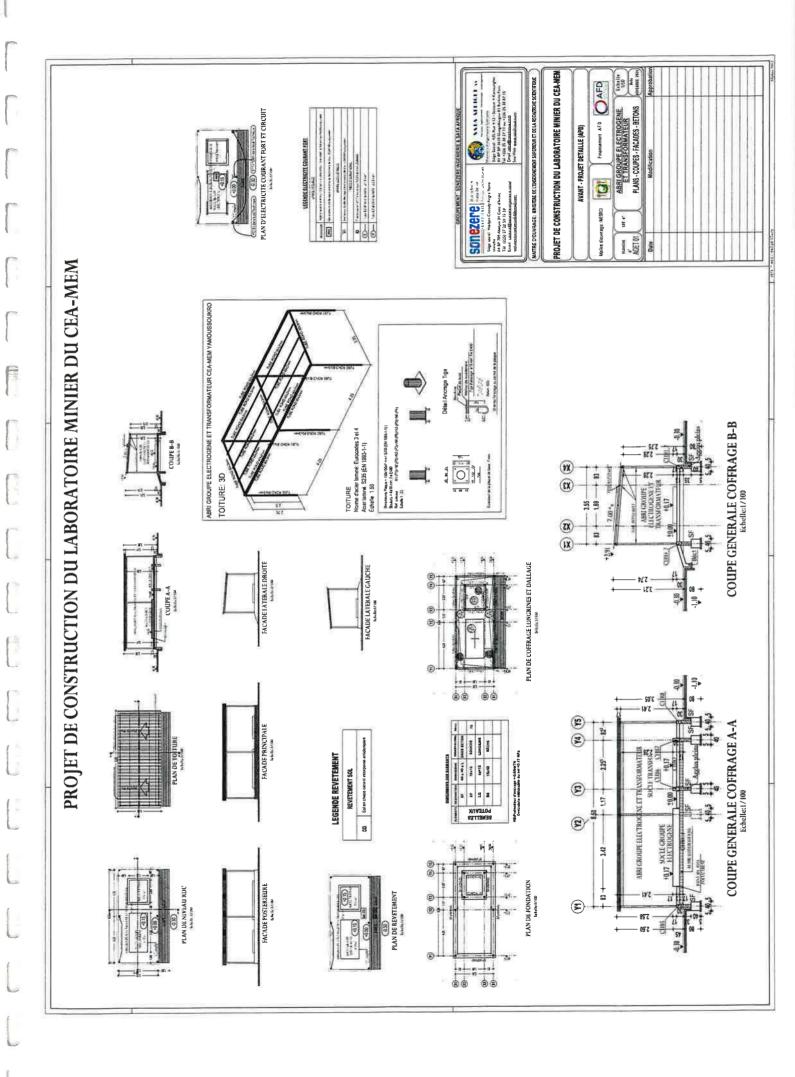
FERRAILLAGE SOCLE TRANSFO





FERRAILLAGE RADIER GROUPE

F


				ı.				
			2:	0.30		1		
								-
0	2		ì	Tél.	Fax	Béton : BETON = 1.85 m3	N = 1.85 m3	Enrobage supérieur = 3 cm
2	Niveau		Elément:	Dalle1		Surface du co	Surface du coffrage = 6.17 m² inferieur = 3 cm	2 inférieur = 3 cm
PRO	Sujet:	RADIER ABRI GROUPR	Dessin:	COFFRAGE DE LA DALLE	E LA DALLE	Echelle : 1/25	Date: 19/11/24	Page 1/4

PLANS D'EXECUTIONS

P

